
GUIDE TO WRITING DEVICE DRIVERS
FOR THE iRMXTM 86 AND iRMXTM 88

1/0 SYS1rEMS

I I

CONTENTS

CHAPTER 1
INTRODUCTION

PAGE

I/O Devices and Device Drivers ••••••••• .,........................... 1-2
I/O Requests •••••••••••••••••••••••••••• ,........................... 1-3
Types of Device Drivers •••••••••••••••• .,........................... 1-3
How to Read This Manual •••••••••••••••• o........................... 1-4

CHAPTER 2
DEVICE DRIVER INTERFACES
I/O System Interfaces •••••••••••••••••• " •••••••••••••••••••••••••••

Device-Unit Information Block (DUIB) • ., •••••••••••••••••••••••••••
DUIB Structure •••••••••••••••••••••. , •••••••••••••••••••••••••••
Using the DUIBs ••••••••••••••••••••. , •••••••••••••••••••••••••••
Creating DUIBs ••••••••••••••••••••• n •••••••••••••••••••••••••••

I/O Request/Result Segment (laRS) •••• ., •••••••••••••••••••••••••••
Device Interfaces •••••••••••••••••••••• n •••••••••••••••••••••••••••

CHAPTER 3
CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS
Categories of Devices •••••••••••••••••• " •••••••••••••••••••••••••••

Common Devices ••••••••••••••••••••••• " •••••••••••••••••••••••••••
Random Access Devices •••••••••••••••• " •••••••••••••••••••••••••••
Terminal Devices ••••••••••••••••••••• u •••••••••••••••••••••••••••

Custom Devices ••••••••••••••••••••••• " •••••••••••••••••••••••••••
I/O System-Supplied Routines for Common and Random Access

Device Drivers •••••••••••••••••••••••..•••••••••••••••••••••••••••
I/O System Algorithm For Calling the Device Driver Procedures ••••••
Required Data Structures ••••••••••••••• " •••••••••••••••••••••••••••

Device Information Tahle ••••••••••••• " •••••••••••••••••••••••••••
Unit Information Table ••••••••••••••• " •••••••••••••••••••••••••••
Relationships Between I/O Procedures Hnd I/O Data Structures •••••

Device Data Storage Area ••••••••••••••• " •••••••••••••••••••••••••••
Writing Drivers For Use With Both iRMX'" 86- and iRMXT" 88-Based

Systems •••••••••••••••••••••••••••••• " •••••••••••••••••••••••••••

CHAPTER 4
I/O REQUESTS
I/O System Responses to I/O Requests ••• " •••••••••••••••••••••••••••

Attach Device Requests ••••••••••••••• " •••••••••••••••••••••••••••
Detach Device Requests •••••••••••••••• , •••••••••••••••••••••••••••
Read, Write, Open, Close, Seek, and Special Requests •••••••••••••
Cancel Requests •••••••••••••••••••••• " •••••••••••••••••••••••••••

DUIB and laRS Fields Used By Device Drivers ••••••••••••••••••••••••

Device Drivers iii

2-1
2-2
2-2
2-7
2-8
2-9
2-16

3-1
3-1
3-1
3-2
3-2

3-2
3-4
3-7
3-8
3-10
3-12
3-13

3-14

4-1
4-1
4-2
4-2
4-2
4-3

I

I

I

CONTENTS
(continued)

CHAPTER 5
WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS
Introduction to Procedures that DevicI= Drivers MURt Supply •••••••••
Device Initialization Procedl1re ••••••••••••••••••••••••••••••••••••
Device Finish Procedure •••••••••••••• , ••••••••••••••••••••••••••••••
Device Start Procedure •••
Device Stop Procedure ••
Device Interrupt Procedure •••
ProcedureR that iRtiXTM 86 Random Access Drivers Must Call •••••••••••

NOTIFY Procedure •••
SEEK$COMPLETE Procedure •••••••••••• ' ••••••••••••••••••••••••••••••
Procedures for Other Long-Term Oper;gtions ••••••••••••••••••••••••

BEGIN$LONG$TERM$OP Procedure ••••• ~ •••••••••••••••••••••••••••••
END$LONG$TERM$OP Procedure •••••••••••••••••••••••••••••••••••••
GET$IORS Procedure ••••••••••••••• Q •••••••••••••••••••••••••••••

Formatting Considerations •••••••••••• ~ •••••••••••••••••••••••••••••

CHAPTER 6
'..JRITING A CUSTOH DEVICE DRIVER
Initialize I/O Procedure ••••••••••••• " •••••••••••••••••••••••••••••
Finish I/O Procedure
Queue I/O Procedure .. .
Cancel I/O Procedure
Implementing a Request OUeue

CHAPTER 7
TERMINAL DRIVERS
Terminal Support Code .. .
Data Structures Supporting Terminal I/O ••••••••••••••••••••••••••••

DUIB •••
Device Information Table •••
Unit Information Table •••
Terminal Controller Data and Termin,gl Uni t Data ••••••••••••••••••

Terminal Support Code (TSC) Data Area ••••••••••••••••••••••••••••••
Procedures that Terminal Drivers Must Supply •••••••••••••••••••••••

Terminal Initialization Procedure ••••••••••••••••••••••••••••••••
Terminal Finish Procedure ••
Terminal Setnp Procedure •••
Terminal Answer Procedure ••
Terminal Hangup Procedure ••
Terminal Check Procedure •••
Terminal Output Procedure ••
Additional Information for Buffered Devices •• ~ ••••• ~ •••••••••••••

Procedures' Use of Data Structures •••••••••••••••••••••••••••••••••

CHAPTER 8
BINDING A DEVICE DRIVER TO THE I/O SYSTEM
Using the iRMXTH 86 Interactive Config1LJlration Utility ••••••••••••••••
Using the iRMXTH 88 Interactive Configuration Utility ••••••••••••••••

Device Drivers iv

PAGE

5-1
5-2
5-2
5-3
5-4
5-5
5-6
5-6
5-7
5-8
5-8
5-9
5-10
5-11

6-1
6-2
6-3
6-4
6-5

7-1
7-2
7-2
7-3
7-6
7-4
7-11
7-17
7-18
7-18
7-19
7-20
7-21
7-22
7-24
7-25
7-27

8-1
8-4

CONTENTS
(continued)

APPENDIX A
RANDOM ACCESS DRIVER SUPPORT ROUTINES
INIT$IO Procedure ••
FINISH$IO Procedure ••••••• ~ •.••••••••••••••••••••••••••••••••••••••
QUEUE$IO Procedure •••
CANCEL$IO Procedure ••••••• ~ ••

PAGE

A-I
A-3
A-5
A-6

Interrupt Task (INTERRUPT$TASK).................................... A-9

APPENDIX B
EXAMPLES OF DEVICE DRIVERS @ • B-1

1-1.
1-2.
2-1.
3-1.
3-2.
3-.3.
3-4.

6-1.
7-1.
7-2.
8-1.
8-2.
A-I.
A-2.
A-3.
A-4.
A-5.

4-1.
4-2.
4-3.
7-1.

FIGURES

Communica tion J.Jevels •••••••••••••••••••••••••••••••••••••••
Device Numbering
Attaching Devices.~ •••••••••••••••••••.••••••••••••••••••••
Interrupt Task Interaction •••••••••••••••••••••••••••••••••
How the I/O System Calls the Device Driver Procedures ••••••
DUIBs, Device and Unit Information Tables ••••••••••••••••••
Relationships Between I/O Procedures and I/O Data
Structures •••
Reque s t Ql1e ue ••••• c, ••

Software Layers Supporting Terminal I/O ••••••••••••••••••••
TSC Data Area ••••• II ••

Example IDEVCF.A86 File ••••••••••••••••••••••••••••••••••••
Example User Device s Screen ••••••••••••••••••••••••••••••••
Random Access Device Driver Initialize I/O.Procedure •••••••
Random Access Deviee Driver Finish I/O Procedure •••••••••••
Random Access Device Driver Queue I/O Procedure ••••••••••••
Random Access Deviee Driver Cancel I/O Procedure •••••••••••
Random Access Device Driver Interrupt Task •••••••••••••••••

TABLES

DUIB and lORS Fields Used by Common Device Drivers •••••••••
DUIB and lORS Fields Used by Random Access Device Drivers ••
DUIB and IORS Fields Used by Custom Device Drivers •••••••••
Uses of Fields in Terminal Driver Data Structures ••••.•••••

Device Drivers v

1-1
1-2
2-8
3-4
3-6
3-7

3-12
6-6
7-2
7-12
8-2
8-4
A-2
A-4
A-6
A-8
A-I0

4-4
4-5
4-6
7-28

I

CHAPTER 1
INTRODUCTION

The iRMX 86 and iRMX 88 I/O Sys tems are E~ach implemen ted as a se t of file
drivers and a set of device drivers. File drivers provide the support
for particular types of files (for example, the named file driver
provides the support for named files). Device drivers provide the
support for particular devices (for example, an iSBC 215 device driver
provides the facilities that enable you to use an iSBC 215 Generic
Winchester controller to control a Winchester-type drive with the I/O
System). Each type of file has its own file driver, and each device has
its own device driver.

One of the reasons that the I/O Systems are broken up in "this manner is
to provide device-independent I/O. Appl:l.cation tasks communicate with
file drivers, no t wi th device drivers. This allows tasks to manipula te
all files in the same manner, regardless of the devices on which the
files reside. File drivers, in turn, communicate with device drivers,
which provide the instructions necessary to manipulate physical devices.
Figure 1-1 shows these levels of communieation.

APPLICATION TASK

file independent interface

FILE DRIVER

device independent interface

DEVICE DRIVER

DEVICE

x-290

Figure 1-1. Communieation Levels

Device Drivers 1-1

I

INTRODUCTION

The I/O System provides a standard interface between file drivers and
device drivers. To a file driver, a device is merely a standard block of
data in a table. To manipulate a device, the file driver calls the
device driver procedures listed in the table. To a device driver, all
file drivers seem the same. Every file driver calls device drivers in
the same manner. This means that the device driver does not need to
concern itself with the concept of a fil'E~ driver. It sees itself as
being called by the I/O System, and it rl2:turns informa tion to the I/O
System. This standard interface has the following advantages:

• The hardware configura tion can ctlange wi thou t extensive
modifications to the soft~Jare. Instead of modifying entire file
drivers when you want to change devices, you need only substitute
a different device driver and modify the table.

• The I/O System can support a greater range of devices. It can
support any device, as long as you supply a device driver that
interfaces to the file drivers in the standard manner.

I/O DEVICES AND DEVICE DRIVERS

Each I/O device consists of a controller and one or more units. A device
as a whole is iden tified by a unique dev:lce number. Uni ts are iden tified
by unit number and by device-unit number. The device number identifies
the controller among all the controllers in the system, the unit number
identifies the unit within the device, and the unique device-unit number
identifies the unit among all the units of all of the devices. Figure
1-2 contains a simplified drawing of three I/O devices and their device,
unit, and device-unit numbers.

DEVICE 0 DI::VICE 1 DEVICE 2 r--------
CONTROLLER CO'" ITROLLER CONTROLLER

I I I -- I I I

UNIT 0 UNIT 1 UNIT 0 INIT 1 UNIT 2 UNIT 0

DEVICE- DEVICE- DEVICE- [) EVICE- DEVICE- DEVICE-
UNIT 0 UNIT 1 UNIT 2 l 'NIT 3 UNIT 4 UNIT 5

x-291

Figure 1-2. Device Numbering

Device Dri ver~, 1-2

INTRODUCTION

You must provide a device driver for every device in your hardware
configuration. That device driver must handle the I/O requests for all
of the uni ts the device supports. Differen t devices can use differen t
device drivers; or if they are the same kind of device, they can share
the same device driver code. (For example, two iSBC 215 controllers are
two separate devices and each has its own device driver. However, these
device drivers can share common code.)

I/O REQUESTS

To the device driver, an I/O request is a request by the I/O System for
the device to perform a certain operation. Operations supported by the
I/O System are:

Read
Write
Seek
Special
Attach device
Detach device
Open
Close

The I/O Sys tern makes an I/O reques t by s~~nding to the device driver an
I/O request/result segment (IORS) containing the necessary information.
(The IORS is described in Chapter 2.) The device driver must translate
this request into specific device commands to cause the device to perform
the requested operation.

TYPES OF DEVICE DRIVERS

The I/O System supports four types of device drivers: custom, common,
random access, and terminal. A custom device driver is one that the user
creates in its entirety. This type of device driver can assume any form
and can provide any functions that the user wishes, as long as the I/O
System can access it by calling four procedures, designated as Initialize
I/O, Finish I/O, Queue I/O, and Cancel I/O.

The I/O System provides the: basic support routines for the common, random
access, and terminal device driver types. These support routines provide
a queueing mechanism, an interrupt handler, and other features needed by
common, random access, and terminal devices. If your device fits into
the common, random access, or terminal device classification, you need to
write only the specialized, device-dependent procedures and interface
them to the ones provided by the I/O System to create a complete device
driver.

Device Drivers 1-3

INTRODUCTION

HOW TO READ THIS MANUAL

This manual is for people who plan to write device drivers for use with
iRMX 86- and/or iRMX 88-based systems. Because there are numerous
terminology differences between the two iRi1X systems, the tone of this
manual is general, unlike that of other manuals for either system. For
iRMX 88 users, this should not be a problem. But iRI1X 86 users should
take note of the following:

• In a number of places the phrase "the location of" is substituted
for "a token for".

• The "device data storage area" that is alluded to in many places
is actually an iRMX 86 segment.

• The term "resources" usually means "objects." The intended
meaning of "resources" is clear from its context.

Device Drivers 1-4

CHAPTER 2
DEVICE DRIVER INTERFACES

Because a device drivpr is a collection of software routines that manages
a device at a hasic level, it must transform general instructions from
the I/O System into device-specific instructions which it then sends to
the device itself. Thus, a device driver has two types of interfaces:

• An interface to the I/O System, which is the same for all device
drivers.

• An interface to the device itself, which varies according to
device.

This chapter discusses these interfaces.

I/O SYSTEM INTERFACES

The interface between the device driver and the I/O System consists of
two data structures: the device-unit information block (DUIB) and the I/O
request/result segment (laRS).

DEVICE-UNIT INFORMATION BLOCK (DUIB)

The DUIB is an interface between a device driver and the I/O System, in
the sense that the DUIB contains the addresses of one of the following
routines:

•
•

The device driver routines (in the case of custom device drivers).

The device driver support routines (in the case of terminal
drivers, common drivers, and random access drivers).

By accessing the DUIB for a unit, the I/O System can call the appropriate
device driver/device driver support routine. All devices, no matter how
diverse, use this standard interface to the I/O System. You must provide
a DUIB for each device-unit in your hardware system. You supply the
information for your DUIBs as part of the configuration process.

Device Drivers 2-1

I

DEVICE DRIVER INTERFACES

DUIB Structure

This section lists the elements that make up a DUIB. When creating DUIBs
for iRMX 86 applications, code them tn the format shmvn here (as
assembly-language structures). The iRMX 86 Interactive Configuration
Utility (ICU) includes your DTTIB file in the assembly of IDEVCF.A86 (a
Basic I/O System. configuration file). IDEVCF.A86 contains the definition
of the structure.

Unlike. the iRHX 86 ICU, the iRMX 88 ICU prompts you for some fields in
the DUIB structure. The ICU automatically fills in the other fields,
depending upon factors such as the type of device you are configuring.
The iRMX 88 ICU generates the DUIBs and places them in the device
configuration source file.

DEFINE DUIB <
& NAME (14), byte (14)
& FILE$DRlVERS, word
& FUNCTS, byte
& FLAGS, byte
& DEV$GRAN, word
& DEV$SIZE, dtlTord
& DEVICE, byte
& UNIT, byte
& DEV$UNIT, word
& INIT$IO, word
& FINISH$IO, word
& QUEUE$IO, word
& CANCEL$IO, word
& DEVICE$INFO$P, pointer
& UNIT$INFO$P, pointer
& UPDATE$TIMEOUT, word
& NUM$BUFFERS, word
& PRIORITY, byte
& FlXED$UPDATE, byte (l.RMX 86 DUIB only)
& MAX$BUFFERS, byte (iRMX 86 DUIB only)
& RESERVED, byte (iR~1X 86 DUIH only)
& >

Device Drivers 2-2

where:

NAME

FILE$DRIVERS

FUNCTS

DEVICE DRIVER INTERFACES

A 14-BYT£ array specifying the name of the DUIB.
This name uniquely identifies the device-unit to
the I/O System. Use only the first 13 bytes. The
fourteenth is used by the I/O System.

You supply the name when configuring your
applieation system. If you are an iRMX 86 user,
you specify the DUIB name when attaching a unit via
the RQAPHYSICAL$ATTACH$DEVICE system call.
Device drivers can ignore this field.

For the iRI1X 88 Executive, the DUIB name is the
device name portion of the name$p parameter for the
DQ$ATTACH or the DQ$CREATE system calls.

WORD specifying file driver validity. Setting bit
number "i" of this word implies that the
corresponding file driver can attach this
devicE~-uni t. Clearing bi t number "i" implies tha t
the file driver cannot attach this device-unit.

The low-order bit is bit O. The bits are
associated with the file drivers as follows:

Bi t "i"

o
1
3

File Driver

physical
stream (iRMX 86 only)
named

The remaining bits of the word must be set to
zero. Device drivers can ignore this field.

BYTE specifying the I/O function validity for this
device-unit. Setting bit number "i" implies that
the dE~vice-uni t supports the corresponding
function. Clearing bit number "i" implies that the
devicE~-unit does not support the function. The
low-order bit is bit O. The bits are associated
with the functions as follows:

Bit "i" Func tion

0 read
1 write
2 seek
3 special
4 attach device
5 de tach device
6 open
7 close

Bi ts l~ and 5 should always be se t. Every device
driver requires the se func tions.

Device Drivers 2-3

I

FLAGS

DEV$GRAN

DEV$SIZE

DEVICE

DEVICE DRIVER INTERFACES

This field is used for informational purposes
only. Setting or clearing bits in this field does
not limit the device driver from performing any I/O
function. In fact, each device driver must be able
to support any I/O function, either by performing
the function or by returning a condition code
indicating the inability of the device to perform
tha t func tion. HO\~ever, to provide accura te s ta tus
informa tion, this field should indica te the
device's ability to perform the I/O functions.
Device drivers can ignore this field.

BYTE specifying characteristics of diskette
devices. The significance of the bits is as
follows, with bit 0 being the low-order bit:

Bit

o

1

2

3

4

5-7

Meaning

o = bits 1-7 not significant
1 bits 1-7 significant
o single density; 1 = double

densi ty
o = single sided; 1 = double

sided
o = 8-inch diskettes
1 = 5 1/4-inch diskettes
o = standard diskette, meaning

tha t track 0 is
single-density with
128-byte sectors

1 = not a standard diskette or
not a diskette

reserved

If bit 0 is set to 1, then a driver for the device
can read track 0 when asked to do so by the I/O
System.

WORD specifying thE! device granularity, in bytes.
This parameter applies to random access devices.
It specifies the minimum number of bytes of
information that the device reads or writes in one
operation.If the device is a disk or magnetic
bubble device, you should set this field equal to
the sector size for the device. Otherwise, set
this field equal to zero.

DWORD specifying the number of bytes of information
that the device-untt can store.

BYTE specifying thn device number of the device
with which this device-unit is associated. Device
drivers can ignore this field.

Device Drivers 2-4

UNIT

DEV$UNIT

INIT$IO

FINISH$IO

QUEUE$IO

CANCEL$IO

DEVICE$INFO$P

UNIT$INFO$P

DEVICE DRIVER INTERFACES

BYTE specifying thE~ uni t number of this
device-unit. This distinguishes the unit from the
other units of the device.

WORD specifying the device-unit number. This
number distinguishE~s the device-unit from the other
uni ts in the en tirE~ hardware sys tem. Device
drivers can ignore this field.

'WORD specifying thE~ address of the Ini tialize I/O
procedure associated with this unit. When creating
the DUIB, use the procedure name as a variable to
supply this information. Device drivers can ignore
this field.

WORD specifying the address of the Finish I/O
procedure associated with this unit. When creating
the DUIB, use the procedure name as a variable to
supply this information. Device drivers can ignore
this field.

WORn specifying thE! address of the Queue I/O
procedure associated with this unit. When creating
the DUIB, use the procedure name as a variable to
supply this information. Device drivers can ignore
this field.

WORD specifying the address of the Cancel I/O
procedure associa tE!d wi th this uni t. When crea ting
the DUIB, use the procedure name as a variable to
supply this information. Device drivers can ignore
this field.

POINTER to a structure which contains additional
information about the device. The common, random
access, and terminal device drivers require, for
each device, a DevIce Information Table, in a
particular format.

This structure is described in Chapter 3. If you
are writing a custom driver, you can place
informa tion in this s truc ture depending on the
needs of your driver. Specify a zero for this
parameter if the associated device driver does not
use this field.

POINTER to a structure that contains additional
information about the unit. Random access and
terminal device drivers require this Unit
Information Table :in a particular format. Refer to
Chapt.er 3 for further information. If you are
wri ting a cus tom d.~vice dr i ver, place informa tion
in th.is structure, depending on the needs of your
driver. Specify a zero for this parameter if the
associated device driver does not use this field.

Device Drivers 2-5

UPDATE$TIMEOUT

NUM$BUFFERS

PRIORITY

FIXED$UPDATE

DEVICE DRIVER INTERFACES

WORD specifying thE~ number of sys tern time uni ts
tha t the I/O Sys tern must wai t before wri ting a
partial sector after processing a write request for
a disk device. In the case of drivers for devices
that are neither disk nor magnetic bubble devices,
set this field to OFFFFH during configuration.
This field applies only to the device for which
this is a DUIB, and is independen t of upda ting tha t
is done either because of the value in the
FIXED$UPDATE field of the DurB or by means of the
A$UPDATE system call of the I/O System. Device
drivers can ignore this field.

WORD which, if not zero, both specifies that the
device is a random access device and indicates the
number of buffers the I/O System allocates. The
I/O System uses these buffers to perform data
blocking and debloeking operations. That is, it
guarantees that data is read or written beginning
on sec tor boundariE:~s. If you desire, the random
access support routines can also guarantee that no
data is written or read across track boundaries in
a si,ngle request (Bee the section on the Unit
Information Table 1n Chapter 3). A value of zero
indicates that the device is not a random access
device. Device drivers can ignore this field.

BYTE specifying thE! priority of the I/O System
service task for the device. Device drivers can
ignore this field.

BYTE indica ting whe ther the fixed upda te op tion was
selected for the device when the application system
\oJ'as configured. This option, when selected, causes
the I/O Sys tern to finish any wri te reques ts tha t
had not been finished earlier because less than a
full sec tor remainE:~d to be wri tten. Fixed upda tes
are performed throughout the entire system whenever
a time interval (specified during configuration)
elapses. This is Independen t of the upda ting tha t
is indicated for a particular device (by the
UPDATE$TIMEOUT field of the DUIB) or the updating
of a par ticular device tha t is indica ted by the
A$UPDATE system call of the I/O System.

A value of OFFH indicates that fixed updating has
been selected for this device, and a value of zero
ind ica te s tha tit h:! s no t been selec te d • Device
drivers can ignore this field.

The FIXED$UPDATE fi,eld is no t presen t in the
iRMX 88 DUIB.

Device Drivers 2-6

MAX$BUFFERS

RESERVED

Using the DUIBs

DEVICE DRIVER INTERFACES

BYTE specifying the: maximum number of buffers that
the Extended I/O System (of the iRMX 86 Operating
System) can alloca te for a connec tion to this
devicE~ when the connec tion is opened by a call to
S$OPEN. The value in this field is specified
during configuration. Device drivers can ignore
this field.

The l'1AX$BUFFERS fie.ld is not present in the iRMX 88
DUIB.

BYTE reserved for future use.

The RESERVED field is not present in the iRMX 88
DUIB.

To use the I/O System to communicate with files on a device-unit, you
mus t firs tat tach the uni t. If you are an iRl1X 88 user, attaching the
uni t occurs au torna tically when you first a ttach or crea te a file on the
unit. If you are an iRMX 86 user, you attach the unit by invoking the
RQAPHYSICAL$ATTACH$DEVICE system call (refer to the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL for a description of this system call).

When you attach a unit, the I/O System assumes that the device-unit
identified by the device name field of the DUIB has the characteristics
identified in the remainder of the DUIB. Thus, whenever the application
software makes an I/O request via the connection to the attached
device-unit, the I/O System ascertains the characteristics of that unit
by examining the associated DUIB. The I/O System looks at the DUIB and
calls the appropriate device driver/device driver support routines listed
there to process the I/O request.

If you want the I/O System to assume different characteristics at
different times for a particular device-unit, you can supply multiple
DUIBs, each containing identical device number, unit number, and
device-unit number parameters, but different DUIB name parameters. Then
you can select one of these DUlBs by specifying the appropriate dev$name
parameter in the RQAPHYSICAL$ATTACH$DEVICE system call (for iRMX 86
users) or the appropriate device name when calling DQ$ATTACH or DQ$CREATE
(for iRMX 88 users ..) However, before you can switch the DUIBs for a
unit, you must detach the unit.

Figure 2-1 illustrates this concept. It shows six DUlBs, two for each of
three units of one device. The main difference within each pair of DUIBs
in this figure is the device granularity parameter, which is either 128
or 512. With this setup, a user can attach any unit of this device with
one of two device granularities. In Figure 2-1, units 0 and 1 are
attached with a granularity of 128 and unit 2 with a granularity of 512.
To change this, the user can detach the device and attach it again using
the other DUIB name.

Device Drivers 2-7

I

DEVICE DRIVER INTERFACES

NOTE

For iRMX 86 systems only, when the
I/O System accesses a device containing
named files, it obtains information
such as granularity, density, size
(5-1/4" or 8" for diskettes), or the
number of sides (single or double) from
the volume label. ThE!refore it is no t
necessary to supply a different DUIB
for every kind of volume you intend to
use. However, for iRJ1X 86
applications, you must supply a
separate DUIB for every kind of volume
you in tend to forma t via the FORMAT
Human Interface command.

DEV$GRAN = 128

DEVICE = 1
UNIT=O
DEV$UNIT=6

NAME = UNITA1
DEV$GRAN = 512

DEVICE = 1
UNIT =0
DEV$UNIT=6 I DUIBS FOR

DEVICE-UNIT 6

NAME = UNITA]

~

Creating DUIBs

~
CALL RQAPHYSICAL$ATTACH$DEVICE (UNITA, .. .)

NAME = UNITB] DEV$GRAN = 1 28

DEVICE = 1
UNIT = 1
DEV$UNIT = 7

NAME = UNITB1
DEV$GRAN= 512

DEVICE = 1
UNIT = 1
DEV$UNIT = 7

-----,
CALL RQAPHYSICAL$ATTACH$DEVICE (UNITB, .. .)

NAME= UNITC
DEV$GRAN = 128

DEVICE = 1
UNIT = 2
DEV$UNIT= 8

NAME = UNITC1
DEV$GRAN = 51 2

DEVICE = 1
UNIT =2
DEV$UNIT = B

~
CALL RQAPHYSICAL$ATTACH$DEVICE (UNITC1 , .. .)

Figure 2-1. Attachlng Devices

I DUla. FOR j DEVICE-UNIT7

DUIBS FOR
DEVICE-UNIT 8

x-292

During interactive configuration, you must provide the information for
all of the DUIBs. The configuration filE!, which the ICU produces, sets
up the DUIBs when it executes. Observe the following guidelines when
supplying DUIB information:

Device Drivers 2-8

DEVICE DRIVER INTERFACES

• Specify a unique name for every DUIB, even those that describe
the same device-unit.

• For every device-unit in the hardware configuration, provide
information for at least one DUIB. Because the DUIB contains the
addresses of the device driver/device driver support routines,
this guarantees tha t no device-uni t is left wi thou t a device
driver to handle its I/O.

• Make sure to specify the same de"ice driver/ device driver support
procedures in all of the DUIBs associated with a particular
device. There is only one set of device driver/device driver
support routines for a given device, and each DUIB for that
device must specify this unique set of routines.

• If you write a common or random access device driver, you must
supply a Device Informa tion TablE:! for each device. If you wri te
a random access device driver, you must also supply a Unit

Informa tion Table for each uni t. See Chap ter 4 for
specifications of these tables. If you are using custom device
drivers and they require these or similar tables, you must supply
them, as well.

• For iRMX 86 systems only, if you write a terminal driver, you
must supply terminal device information table for each terminal
device driver, as well as a unit information table for each
terminal. See Chapter 7 for spec~ifica tions of these tables.

I/O REQUEST/RESULT SEGMENT (IORS)

An I/O request/result segment (IORS) is the second structure that forms
an interface between a device driver and the I/O System. The I/O System
creates an IORS when a user requests an I/O operation. The IORS contains
informa tion abou t the reques t and abou t the uni t on which the opera tion
is to be performed. The I/O Sys tern pass~~s the IORS to the appropria te
device driver, which then processes the request. When the device driver
performs the operation indicated in the IORS, it must modify the IORS to
indicate what it has done and send the IORS back to the response mailbox
(exchange) indicated in the IORS.

The IORS is the only mechanism tha t the I/O Sys tern uses to transmi t
requests to device drivers. The IORS structure is always the same.
Every device driver must be aware of this structure and must update the
information in the IORS after performing the requested function. The
IORS is structured as follows:

Device Drivers 2-9

I

DECLARE
IORS

where:

STATUS

DEVICE D~IVER INTERFACES

STATUS
UNIT$STATUS
ACTUAL
ACTUAL$FILL
DEVICE
UNIT
FUNCT
SUBFUNCT
DEV$LOC
BUFF$P
COUNT
COUNT$FILL
AUX$P
LINK$FOR
LINK$BACK
RESP$l\fBOX
DONE
FILL
CANCEL$ID
CONN$T

STRUCTURE(
WORD,
WORD,
WORD,
WORD,
WORD,
BYTE,
BYTE,
WORD,
DWORD,
POINTER,
WORD,
WORD,
POINTER,
POINTER,
POINTER,
SELECTOR,
BYTE,
BYTE,
SELECTOR,
SELECTOR) ; (iRl1X 86 IO~S only)

WORD in which the device driver must place the
condition code for the I/O operation. The E$OK
condition code indicates successful completion of the
operation. For a complete list of possible condition
codes, see ei ther th€~ iRMX 86 NUCLEUS REFERENCE
MANUAL, the iRMX 86 BASIC I/O SYSTEM REFERENCE
l\fANUAL, and the iRMX 86 EXTENDED 1/0 SYSTE11 REFERENCE
MANUAL, or the iRMX 88 REFERENCE MANUAL.

UNIT$STATUS WORD in which the device driver must place additional
status information if the status parameter was set to
indicate the E$IO conjition. The unit status codes
and their descriptions are as follows:

Code Mnemonic Description

0 IO$UNCLASS Unclassified error
1 IO$SOFT Soft error; a retry is possible
2 IO$HARD Hard error; a retry is

impossible
3 IO$OPRINT Operator intervention is

required
4 IO$WRPROT Write-protected volume
5* IONODATA No data on the next tape record
6* IO$MODE A read (or write) was attempted

before the previous write (or
read) completed

*For iRMX 86 systems only.

Device Drivers 2-10

ACTUAL

ACTUAL$FILL

DEVICE

UNIT

FUNCT

SUBFUNCT

DEVICE DRIVER INTERFACES

The I/O System reserves values 0 through 3 (the least
significant four bits) of this field for unit status
codes. The high 12 bits of this field can be used
for any other purpose that you wish. For example,
the iSBC 204 driver places the controller's result
byte in the high eight bits of this field. For more
informa.tion about the data returned by your device
controller, refer to the hardware reference manual
for your controller.

WORn which the device driver must update upon
completion of an I/O operation to indicate the number
of bytes of data actually transferred.

Reserved WORD.

WORD into which the I/O System places the number of
the device for which this request is intended.

BYTE into which the I/O System places the number of
the unit for which this request is intended.

dYTE into which the I/O System places the function
code for the operation to be performed. Possible
function codes are:

Code Function
0 F$READ
1 F$WRITE
2 F$SEEK
3 F$SPECIAL
4 F$ATTACH$DEV
5 F$DETACH$OEV
6 F$OPEN
7 F$CLOSE

WORD in to which the I/O Sys tern places the ac tual
function code of the operation, when the F$SPECIAL
function code was placed into the FUNCT field. The
value in this field depends upon the file driver to
be used with this device. The possible subfunctions
and the driver types to which they apply are as
follows:

File Driver Subfunct
For Connection Value Function

Physical* 0 Forma t track
Stream 0 Query
Stream 1 Satisfy
Physical or Named 2 Notify
Physical 3 Ge t disk/ tape

data

Device Drivers 2-11

DEV$LOC

BUFF$P

DEVICE DRIVER INTERFACES

File Driver Subfunct
For Connection Value

Physical 4
Physical 5
Physical 6
Physical 7
Physical 8

Physical 9

Physical 10
11-32767

Function

Get terminal data
Set terminal data
Set signal
Rewind tape
Read tape file

mark
Write tape file

mark
Retension tape
Reserved for

other Intel
produc ts

*These functions apply both to iRMX 86 and
iRMX 88 systems. The other functions are
iRMX 86-specific.

The va.lues from 32768 to 65535 are available for
user-written/custom device drivers.

DWORD into which the I/O System initially places the
absolute by te loca tion on the I/O device where the
operation is to be pHrformed. For example, for a
write operation, this is the address on the device
where writing begins.. The I/O System fills out this
information when it passes the IORS to the driver
support routines.

If the device driver is a random access driver, the
random access support routines modify the information
in the DEV$LOC field before passing the IORS on to
user-written driver procedures listed in Chapter 5.
The va.lue that the random access support routines
fill out depends upon the TRACK$SIZE field in the
unit's Unit Informat:lon Table (see Chapter 3).

• If the TRACK$SIZE field is zero, the random
access support routines divide the value in
DEV$LOC by the dE!vice granulari ty and place tha t
value (the absolute sector number) in the DEV$LOC
field.

• If the TRACK$SIZg field is nonzero, the random
access support routines use the absolute byte
number in DEV$LOG to calculate the track and
sector numbers. The routines then place the
track number in the high-order WORD (of DEV$LOC)
and the sector number in the low-order WORD (of
DEV$LOC).

POINTER which the I/O System sets to indicate the
in ternal buffer WherE! da ta is read from or wri t ten to.

Device Drivers 2-12

COUNT

COUNT$FILL

AUX$P

DEVICE DRIVER INTERFACES

WORD which the I/O System sets to indicate the number
of bytes to transfer.

Reserved WORD.

POINTER which the I/O System can set to indicate the
location of auxiliary data. Normally, the I/O System
uses AUX$P to pass or receive the addi tional da ta
that the various subfunctions of the SPECIAL call
require .•

The following paragraphs define the particular data
structures pointed to by AUX$P. The data structure
actually pointed to depends upon the SUBFUNCT field
of the IORS.

In a request to format a track on a disk or diskette,
FUNCT equals special, SUBFUNCT equals format track,
and AUX$P points to a structure of the form:

DECLARE FORMAT$TRACK STRUCTURE(
TRACK$NUMBER WORD,
INTERLJ~AVE WORD,
TRACK$OFFSET WORD,
FILL$QfAR BYTE);

These fields are def:ined as follows:

track$number The number of the track to be
formatted. Acceptable values are 0 to
(number of tracks on the volume - 1).

interleave The interleaving factor for the track.
(That is, the number of physical
sectors to advance when locating the
next logical sector.) The supplied
value, before being used, is evaluated
MOD th,~ number of sec tor s per track.

track$offset The number of physical sectors to
advancl~ when loca ting the firs t logical
sector on the next track.

fill$char The byte value with which each sector
is to be filled.

NOTE

The rest of the info~nation about the
AUX$P field is iRMX 86-specific.

Device Drivers 2-13

DEVICE DRIVER INTERFACES

In a request to set up an iRMX 86 mailbox, where the
iRMX 86 I/O System i8 to send an object whenever a
door to a flexible disk drive is opened or the STOP
button on a hard disk drive is pressed, FUNCT equals
special, SUBFUNCT equals notify, and AUX$P points to
a structure of the form:

DECLARE SETUP$NOTIFY STRUCTURE(
MAILBOX SELECTOR,
OBJECT SELECTOR) ;

where the fields are defined in the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL. Random access drivers do
not have to process such requests because they are
handle,d by the I/O System.

In a request to obtain information about iSBC 215 or
iSBC 220 (supported) disk devices, FUNCT equals
special, SUBFUNCT equals get device characteristics,
and AUX$P points to a structure of the form:

DECLARE DISK$DRIVE$DATA STRUCTURE(
CYLINDERS WORD,
FIXED BYTE,
REt10VABLE BYTE,
SECTORS BYTE,
SECTOR$SIZE WORD,
ALTERNATES BYTE);

where the fields are defined in the iruiX 86 BASIC I/O
SYSTEM REFERENCE MANUAL.

In a request to obtaln information about iSBX 217
tape drives (associat,ed wi th an iSBC 215G board),
FUNCT equals special, SUBFUNCT equals get device
characteristics, and AUX$P points to a structure of
the form:

DEGLARt: TAPE$DRIVE$DATA STRUCTURE(
TAPE WORD,
RESERVED(7) BYTE);

where the fields are defined in the iRMX 86 BASIC I/O
SYSTEM REFERENCE HANOAL.

In a request to read or write terminal mode
information for a terminal being driven by a terminal
driver, FUNCT equals special, SUBFUNCT equals get
terminal attributes (:Eor reading) or set terminal
attributes (for writing), and AUX$P points to a
structure of the form:

Device Drivers 2-14

LIi~K$FOR

LINK$BACK

DEVICE DRIVER INTERFACES

DECLARE TERMINAL$ATTRIBUTES STRUCTURE(
NUM$WORDS WORD,
NUM$USED WORD,
CONNECTION$F'LAGS WORD,
TERMINAL$FLAGS WORD,
IN$BAUD$RATE WORD,
OUT$BAUD$RATE WORD,
SCROLL$LINES WORD,
XYSIZE WORD,
XYOFFSET WORD,
FLOW$CONTROL WORD,
HIGH$WATER$11IARK \~ORD,

LOW$WATER$MARK WORD,
FCONCHAR WORD,
FCOFFCHAR WORD);

where the fields are defined in the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL. If you are using the
Terminal Support Code, this special subfunction is
invisible to the terminal device driver.

In a request to set up special character recogni tion
in the input stream of a terminal driver for
signalling purposes, FUNCT equals special, SUBFUNCT
equals signal, and AUX$P points to a structure of the
form:

DECLARE SIGNAL$CHARACTER STRUCTURE(
SEMAPHORE SELECTOR
C HARACr ER BYTE) ;

where the fields are defined in the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL. In a request to read a tape
file mark, FUNGT equals special, SUBFUNCT equals read
tape file mark, and AUX$P points to a structure of
the form:

DECLARE READ$FILE$MARK STRUCTURE(
SEARCH BYTE);

where the field is defined in the iR11X 86 BASIC I/O
SYSTEM REFERENCE MANUAL.

POINTER that the devJlce driver/device driver support
routines can use to implement a request queue. This
field points to the location of the next laRS in the
queue.

POINTER that the device driver/device driver support
routines can use to implement a request queue. This
field points to the location of the previous laRS in
the queue.

Device Drivers 2-15

RESP$MBOX

DONE

FILL

CANCEL$ID

CONN$T

DEVICE INTERFACES

DEVICE DRIVER I~rERFACES

SELECTOR that the I/O System fills with either an
iRMX 86 token for the! response mailbox or the address
of an iRl1X 88 exchange. Upon comple tion of the I/O
request, the device driver/device driver support
routines must send the IORS to this response mailbox
or exchange.

BYTE that the device driver can set to TRUE (OFFH) or
FALSE (OOH) to indicate whether the entire request
has been completed.

Reserved BYTE.

SELECTOR used to identify queued I/O requests that
CANCEL$IO can remove from the queue.

SELECTOR used in req"ues ts to the iRMX 86 I/O Sys tem.
This field contains the token of the iRMX 86 file
connection through which the request was issued.

To carry out I/O requests, one or more of the routines in every device
dri ver mus t actually send commands to thi: device itself. The steps tha t
a procedure of this sort must go through vary considerably, depending on
the type of I/O device. Procedures supplied with the I/O System to
manipulate devices such as the iSBC 204 and iSBC 206 devices use the
PL/M-86 builtins INPUT and OUTPUT to transmit to and receive from I/O
ports. Other devices may require different methods. The I/O System
places no restrictions on the method of (!ommunicating with devices. Use
the method that the device requires.

Device Driver8 2-16

• 0) CHAPTER 3
CATEGORIES AND PROPERTIES

OF DEVICES AND DRIVERS

There are four types of device drivers in. the iRMX 86 environment:
common, random access, cust()m, and termin.al. There are three types of
device drivers in the iRMX 88 environment: common, random access, and
custom. This chapter defines the distinc:tions between the types of
drivers and discusses the characteristics and data structures pertaining
to common and random access device drivers. Chapters 5, 6, and 7 are
devoted to explaining how t() write the va.rious types of device drivers.

CATEGORIES OF DEVICES

Because the I/O System provides procedurels tha t cons ti tu te the bulk of
any common or random access device driver, you should consider the
poss ibili ty tha t your devicc~ is a common or random access device. If
your device falls in ei ther of these ca te!gories, you can avoid mos t of
the work of writing a device driver by using the supplied procedures.
The following sections define the four types of devices.

COMMON DEVICES

Common devices are relatively simple dev:f.ces other than terminals, such
as line printers. This ca tegory includes devices tha t conform to the
following conditions:

• A first-in/first-out mechanism for queuing requests is sufficient
for accessing these devices.

• Only one in terrupt level is needE~d to service a device.

• Data either read or written by these devices does not need to be
broken up into blocks.

If you have a device that fits into this category, you can save the
effort of creating an entire device drivE~r by using the common driver
routines supplied by the I/O System. Chapter 5 of this manual describes
the procedures that you must write to complete the balance of a common
device driver.

RANDOM ACCESS DEVICES

A random access device is a device, such as a disk drive, in which data
can be read from or written to any address of the device. The support
routines provided by the I/O System for random access assume the
following conditions:

Device Drivers 3-1

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

• A first-in/first-out mechanism for queuing requests is sufficient
for accessing these devices.

• Only one interrupt level is needed to service the device.

• I/O requests must be broken up into blocks of a specific length.

• The device supports random access seek operations.

If you have devices that fit into the random access category, you can
take advantage of the random access support routines provided by the I/O
System. Chapter 5 of this manual describes the procedures that you must
write to complete the balance of a random access device driver.

TERMINAL DEVICES

A terminal device is charac terized by thE! fac t tha tit reads and wri tes
single characters, with an interrupt for each character. Because such
devices are entirely different than common, random access, and even
custom devices, terminal drivers and thelr required data structures are
described in Chapter 7. The remainder of this chapter applies only to
common, random access, and custom device drivers.

CUSTOM DEVICES

If your device fits neither the common nor the random access category,
and is not a terminal or terminal-like dc2:vice, you mus t wri te the entire
driver for the device. The requirements of a custom device driver are
defined in Chapter 6.

I/O SYSTEM-SUPPLIED ROUTINES FOR C0I1MON AND RANDOM ACCESS DEVICE DRIVERS

The I/O Sys tern supplies the common and random access routines tha tit
calls when processing I/O reques ts. Flmv char ts for these procedures
appear in Appendix A. The names and funetions of these procedures are as
follows: (The "RAD$" prefix applies to :lRMX 88 routine names.)

Routine

(RAD$)INIT$IO

(RAD$)FINISH$IO

Function

Creates the resources needed by the remainder of
the driver routines, creates an interrupt task,
and calls a user-·supplied rou tine tha t
initializes the device itself.

Deletes the resources used by the other driver
routines, deletes the interrupt task, and calls a
user-supplied procedure tha t performs final
processing on the device itself.

Device Drivers 3-2

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Routine

(RAD$)QUEUE$IO

(RAD$)CANCEL$IO

Function

Places I/O requests (IORSs) on the queue of
requests.

Removes one or more requests from the request
queue, possibly stopping the processing of a
request that has already been started.

These routines process I/O requests for both common and random access
devices. They distinguish between categories based on the value of the
NUM$BUFFERS field in the unit's device-unit information block (DUIB).
(When calling each of these routines, the I/O System supplies a pointer
to the DUIB as one of the parameters.) If the NUM$BUFFERS field is
nonzero, the routines assume the device is a random access device. If
the NUM$BUFFERS field is zero, the routines assume the device is a common
device.

In addition to the routines just described, the I/O System supplies an
interrupt handler (interrupt service routine) and an interrupt task
(called IN'fERRUPT$TASK) which respond to all in terrupts genera ted by the
units of a device, process those interrupts, and start the device working
on the next I/O request on the queue. The INIT$IO procedure creates the
in terrup t task.

After a device finishes processing a request, it sends an interrupt to
the processor. As a consequence, the processor calls the interrupt
handler. This handler ei thE~r processes the interrupt itself or invokes
an interrupt task to process the interrupt. Since an interrupt handler
is limited in the types of system calls that it can make and the number
of interrupts that can be enabled while it is processing, an interrupt
task usually services the in terrup t. The in terrup t task feeds the
results of the interrupt back to the I/O System (data from a read
operation, status from other types of operations). The interrupt task
then gets the next I/O request from the queue and starts the device
processing this request. This cycle continues until the device is
detached.

Device Drivers 3-3

CATEGORIES AND PROPERTIES OJ? DEVICES AND DRIVERS

Figure 3-1 shows the interaction between an interrupt task, an I/O
device, an I/O request queue, and the QUE~ue I/O device driver procedure.
The interrupt task in this figure is in a continual cycle of waiting for
an interrupt, processing it, getting the next I/O request, and starting
up the device again. While this is going on, the Queue I/O procedure
runs in parallel, putting additional I/O requests on the queue.

REQUEST QUEUE INTERRUPT TASK

1/0 REQUEST l· CD GET REQUEST
CD SERVICE
INTERRUPT

CD :3 .. TA .. R.T .. D.E.ViiiiIC.E __ -.
1/0 REQUEST

• • •

Q UEUE I/O PROCEDURE

1/0 REQUEST III(PUT REQUESTS ON QUEUE D
Figure 3-1. Interrupt Task Interaction

I/O SYSTEM ALGORITHM FOR CALLING THE DEVICE DRIVER PROCEDURES

The I/O System calls each of the four device driver procedures in
response to specific conditions. Figure 3-2 is a flow chart that
illustrates the conditions under which three of the four procedures are
called. The following numbered paragraphs discuss the portions of Figure
3-2 labeled with corresponding circled numbers.

1. To start I/O processing, an applicatj~on task must make an I/O
request. It can do this by invoking any of a variety of system
calls. However, if you are an iRMX 86 user, the first I/O request to
each device-unit must be an RQAPHYSICAL$ATTACH$DEVICE system call,
and if you are an iRMX 88 user, the first request to each device-unit
must be either a DQ$ATTACH or a DQ$CREATE system call.

Device Drivers 3-4

x-678

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

2. If the request results from an RQAPHYSICAL$ATTACH$DEVICE, a
DQ$ATTACH, or a DQ$CREATE system c:all, the I/O System checks to
see if any other uni ts of the devi.ce are curren tly a ttached. If
no other units of the device are c.urrently attached, the I/O
Sys tern real:l.zes tha t the device ha.s no t been ini tialized and calls
the Initialize I/O procedure first, before queueing the request.

3. Whether or not the I/O System called the Initialize I/O procedure,
it calls the Queue I/O procedure to queue the request for
execution.

4. If you are an iRMX 86 user and the~ reques t jus t queued resul ted
from an iRMX 86 RQAPHYSICAL$DETACH$DEVICE system call, the I/O
System checks to see if any other units of the device are
currently attached. If no other units of the device are attached,
the I/O System calls the Finish I/O procedure to do any final
processing on the device and clean up resources used by the device
driver routines.

If you are an iRMX 8B user and the. reques t jus t queued resul ted
from ei ther a DQ$DETACH or a DQ$DE:LETE sys tern call, the I/O Sys tem
checks to see if any other units of the device are currently
attached. If no othE~r units of the device are attached, the I/O
System calls the Finish I/O procedlure to do any final processing
on the device and clean up resourc.es used by the device driver
rou tines.

The iRMX 86 I/O System calls the fourth dlevice driver procedure, the
Cancel I/O procedure, under the following conditions:

• If the user makes an RQAPHYSICAL$DETACH$DEVICE system call
specifying the hard detach option, to forcibly detach the
connection objects associated with a device-unit. The iRMX 86
BASIC I/O SYSTEM REFERENCE MANUAL describes the hard detach
option.

• If the job containing the task which made a request is deleted.

The iRMX 88 I/O System does not call the Cancel I/O procedure.

Device Drivers 3-5

®

CATEGORIES AND PROPERTIES OF' DEVICES AND DRIVERS

NO

YES
~---------<

INITIALIZE 1/0 PROCEDURE TO
INITIALIZE THE DEVICE [

1/0 SYSTEM CALLS THE

,------.-----.J

1/0 SYSTEM CALLS THE QUEUE 1/0
PROCEDURE TO PLACE THE

REQUEST ON THE QUEUE

.. - .. ------~<

RETURN)

"-------

1/0 SYSTEM CALLS THE FINISH 1/0
PROCEDURE TO CLEAN UP THE
DEVICE AND DELETE OBJECTS

1877

Figure 3-2. How the I/O System Calls the Device Driver Procedures

Device DriverB 3-6

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

REQUIRED DATA STRUCTURES

In order for the I/O Sys tem·-supplied rou tines to be able to call the
user-supplied routines, you must supply the addresses of these
user-supplied routines, as well as other information, in a Device
Information Table. In addition, processing I/O requests through a random
access driver requires a Unit Information Table. Each DUIB contains one
pointer field for a Device Information Table and another for a Unit
Information Table.

DUIBs tha t correspond to uni ts of the same device should poin t to the
same Device Information Table, but they ean point to different Unit
Information Tables, if the units have different characteristics. Figure
3-3 illustrates this.

DUIBl

Device 1
Unit 0

UNITSINFOSl DEV$INFO$l

DEVSINFO$l

UNITSINFO$l

DUIB2

Device 1
Unit 1

DEVSINFOSl

UNITSINFOS2

UNITSINFO$2 DUIB3 DEVSINFO$2

Device 2
Unit 0

DEVSINFOS2

UNITSINF'OS2

Figure 3-3. DUIBs, Device and Unit Information Tables

Device Drivers 3-7

Unit
o

Unit
1

Unit
o

Device
1

Device
2

x-293

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

DEVICE INFORMATION TABLE

Common and random access Device Information Tables contain the same
fields in the same order. When creating Device Information Tables for
iRMX 86 applications, code them in the format shown here (as
assembly-language structures). If you g:lve the iRMX 86 ICU the pathname
of your Unit Information Table file, the ICU includes the file in the
assembly of IDEVCF.A86 (a Basic I/O System configuration file).
IDEVCF.A86 contains the definition of the structure.

The fields DEVICE$INIT, DEVICE$FINISH, DEVICE$START, DEVICE$STOP, and
DEVICE$INTERRUPT contain the names of user-supplied procedures whose
duties are described in Chapter 5. When creating the file containing
your Device Information Tables, specify external declarations for these
user-supplied procedures. This allows the code for these user-supplied
procedures to be included into the assemhly of the I/O System. For
example, if your procedures are named DEVICE$INIT, DEVICE$FINISH,
DEVICE$START, DEVICE$STOP, and DEVICE$INTERRUPT, include the following
declarations in the file containing your Device Information Tables:

extrn device$init: near
extrn device$finish: near
extrn device$start: near
extrn device$stop: near
extrn device$interrupt: near

The iRMX 88 ICU prompts you for each field in the Device Information
Table structure. The, iRMX 88 ICU generates the Device Information Table
and places it in the device configuration source file.

Use the following format when coding YOUlC Device Informa tion Tables:

RADEV DEV INFO <
& LEVEL, word
& PRIORITY, byte
& STACK$SIZE, word
& DATA$SIZE, word
& NUM$UNITS, word
& DEVICE$INIT, word
& DEVICE$FINISH, word
& DEVICE$START, word
& DEVICE$STOP, word
& DEVICE$INTERRUPT word
& >

where:

LEVEL WORD specifying an enl:::,oded inte~rupt level at which
the device will inter:cupt. The interrupt task uses
this value to associate itself with the correct
interrupt level. The values for this field are
encoded as follows:

Device Drivers 3-8

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

PRIORITY

STACK$SIZE

DATA$SIZE

NUM$UNITS

iRMX 86 VALUES

Bi ts Value

15-7 0

6-4 First digi t of the interrupt level
(0-7).

3 If one, the level is a master level and
bi ts 6--4 specify the en tire level
number ..

If zero, the level is a slave level and
bits 2-0 specify the second digit.

2-0 Second digit of the interrupt level
(0-7), if bit 3 is zero.

iRMX 88 VALUES

The values available are 0 through 3FH. Refer to
the iRMX 88 REFERENCE MANUAL for further
informa tion.

BYTE specifying the initial priority of the
interrupt task. The actual priority of an
iRMX 86 interrupt task might change because the
iRMX 86 Nucleus adjusts an interrupt task's
priority according to the interrupt level that it
services. Refer to the iRMX 86 NUCLEUS REFERENCE
MANUAL for further information about this
rela tionship be t'ATeen in terrupt task priori ties
and in terrupt levels.

WORD specifying the size, in bytes, of the stack
for the user-wri t ten device in terrup t procedure
(and procedures that it calls). This number
should not include stack requirements for the I/O
System-supplied procedures. They add their
requirements to this figure.

WORD specifying the size, in bytes, of the user
portion of the dcavice' s da ta storage area. This
figure should not include the amount needed by
the I/O System-supplied procedures; rather, it
should include only that amount needed by the
user-written routines. This then is the size of
the read or wri tla buffers plus any flags tha t the
user-written routines need.

WORD specifying the number of units supported by
the driver. Units are assumed to be numbered
consecutively, starting with zero.

Device Drivers 3-9

I

CATEGORIES AND PROPE~TIES OF DEVICES AND DRIVERS

DEVICE$INIT

DEVICE$FINISH

DEVICE$START

DEVICE$STOP

D£VICE$INTERRUPT

WORD specifying the start address of a
user-written device initialization procedure.
The format of this procedure, which INIT$IO
calls, is described in Chapter 5.

WORD specifying the start address of a
user-written device finish procedure. The format
of this procedure, which FINISH$IO calls, is
described in Chapter 5.

WORD specifying the start address of a
user-written device start procedure. The format
of this procedure, which QUEUE$IO and
INTERRUPT$TASK call, is described in Chapter 5.

WORD specifying the start address of a
user-written device stop procedure. The format
of this procedure, which CANCEL$IO calls, is
described in Chapter 5.

WORD specifying the start address of a
user-written device interrupt procedure. The
format of this procedure, which INTERRUPT$TASK
calls, is described in Chapter 5.

Depending on the requirements of your device, you can append additional
information to the RADEV DEV INFO structut"e. For example, most devices
require you to append the I/O port address to this s truc ture, so tha t the
user-written procedures have access to the device.

UNIT INFORMATION TABLE

If you have random access device drivers in your system, you must create
a Unit Information Table for each different type of unit in your system.
Each random access device-unit's DUIB must point to one Unit Information
Table, although multiple DUIBs can point to the same Unit Information
Table. The Unit Information Table must include all information that is
uni t-dependen t.

When crea ting Uni t Informa tion Tables for i&1X 86 applica tions, code them
in the format shown here (as assembly-language structures). If you give
the iRMX 86 ICU the pathname of your Unit Information Table file, the ICU
includes the file in the assembly of IDEVGF.A86 (a Basic I/O System
configuration file). IDEVCF.A86 contains the definition of the structure.

The iRMX 88 ICU prompts you for some fields in the Unit Information Table
structure. The iRMX 88 ICU generates the Unit Information Table and
places it in the device configuration sout"ce file •.

The minimum requirements for the structure of the Unit Information Table
are as follows:

Device Drivers 3-10

CATEGORIES AND PROPERTIES OF' DEVICES AND DRIVERS

RADEV UNIT INFO <
& TRACK$SIZE, word

word & MAX$RETRY,
& CYLINDER$SIZE
& >

word

where:

TRACK$SIZE

MAX$RETRY

WORD specifying the size, in bytes, of a single track
of a volume on the unit. If the device controller
supports reading and writing across track boundaries,
and your driver is a random-access driver, place a
zero in this field. If you specify a zero for this
field, the I/O System-supplied random access support
procedures place an absolute sector number in the
DEV$LOC field of the laRS. If you specify a nonzero
value for this field, the random access support
procedure s guaran tee tha t read and wri te reques ts do
not cross track boundaries. They do this by placing
the sector number in the low-order word of the DEV$LOC
field of the laRS and the track number in the
high-order word of the DEV$LOC field before calling a
user-written device start procedure. Instructions for
writing a device start procedure are contained in
Chapter 5.

WORD specifying the maximum number of times an I/O
request should be tried if an error occurs. Nine is
the recommended value for this field. When this field
contains a nonzero value, the I/O System-supplied
procedures guarantee that read or write requests are
retried if the user-supplied device star t or device
in terrup t procedures re turn an IO$SOFT condi tion in
the IORS.UNIT$STATUS field. (The 10RS.UNIT$STATUS
field is described in the "laRS Structure" section of
Chapter 2.)

CYLINDER$SIZE For iRMX 86 systems, a WORD whose meaning depends on
its value, as follows:

o The I/O System never requests a seek
opera tion. Ins tead, it expec ts the device
driver/controller to perform implied "seeks"
when a read/write on the unit begins on a
cylinder which is different from the one
associated with the current position of the
read/write head.

1 The I/O System automatically requests a seek
operation (to seek to the correct cylinder)
before performing a read or write. The
device driver for the unit must call the
SEEK$COMPLETE procedure immediately
following each seek operation.

Device Drivers 3-11

I

CATEGORIeS AND PRopeRfIES OF DEVICES AND DRIVERS

Other Any other vallue specifies the number of
sectors in a cylinder on the unit. The I/O
System auto~~tically requests a seek
operation whenever a requested read or write
opera tion on the uni t begins in a differen t
cylinder than that associated with the
current position of the read/write head.
The device driver for the unit must call the
SEEK$COMPLETE procedure immediately
following each seek operation.

RELATIONSHIPS BETWEEN I/O PROCEDURES AND I/O DATA STRUCTURES

This section brings together several of the procedures and data
structures that have been described so far in this manual. Figure 3-4
shows the many rela tionships tha texis t among these en ti ties, wi th solid
arrows indica ting procedure calls and dotted arrows indica ting poin ters.
Note that the I/O System con tains the address of each DUIB, which in turn
contains the addresses of the procedures that the I/O System calls when
performing I/O on the associated device-unit. The DUIB also contains the
address of the Device Information Table and, if the device is a random
access device, the Uni t Informa tion Ta blE~. The Device Informa tion Table,
in turn, contains the addresses of the procedures that are called by the
procedures that the I/O System calls. It is through these links that the
appropriate calls are made in the servicLng of an I/O request for a
particular device-unit.

Device Drivers 3-12

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

INlnlO • DEVICESINIT

l:,,,o ~/ ::'''''''M~,---__ DE_VI_CE_----,

/ ~ I r:-::::I
I / I I ~

NUCrLEUS,-,-,- 1-. / / I II ~
/ 'i"INTERRUPT--- INTERRUPT ---+f

l
DEVICESINTERRUPT

TASK ___ • 110 SYSTEM I I HANDLER TASK <I

~I L / II /

DUIB

DIVSUNIT
INITSID

aUEUESIO

CANCELSIO
FINISHSIO

DEVICESINFOSP

UNITSINFOSP

/ X ~ I I ;;r-~---_-----J
I I CANCELSIO· I I / 10 DEVICESST/O.__ -.-- -

/
/
/
I

I / /~ / I / /~ .__ - -- - -
II I I 1---;1'---

I I / --1.--1--; /
II / .__.--- I I /

I I / ~I~S~:;:;;>, --- / I I ~.,. DEVICESFINISH

/ / /..--/- I /'
I I ~ - - ;;./ I I / /'
1-'--..-/ ./ I I / / /'/'

I // /'./ I / / / ./

~~: __ -~ O":::I::':~'" I/;~/ /

-
DEVICESFINISH /

"- DEVICESSTART - /!
"- DEVICESSTOP /

"- DEVICES INTERRUPT

"-
"­

"-
'"'-

"-

'" UNIT INFO. TABLE

J1r----]

LEGEND:

PROCEDURE CALL

REFERENCE

x-118

Figure 3-4. Relationships Between I/O Procedures and I/O Data Structures

DEVICE DATA STORAGE AREA

The common and random access device dri viers are se t up so tha tall da ta
that is local to a device is maintained in an area of memory. The
Initialize I/O procedure creates this device data storage area, and the
other procedures of the driver access and update information in it as
needed. Storing the device-local data in a central area serves two
purposes.

First, all device driver procedures that service individual units of the
device can access and update the same data. The Initialize I/O procedure
passes the address of the area back to the I/O System, which in turn
gives the address to the other procedures of the driver.

Device Drivers 3-13

CATEGORIES AND PROPERTIES OF' DEVICES AND DRIVERS

They can then place information relevant to the device as a whole into
the area. The identity of the first IORS on the request queue is
main tained in this area, as well as the at tachmen t s ta tus of the
individual units and a means of accessing the interrupt task.

Second, several devices of the same type can share the same device driver
code and still maintain separate device data areas. For example, suppose
two iSBC 204 devices use the same device driver code. The same
Initialize I/O procedure is called for each device, and each time it is
called it obtains memory for the device data. However, the memory areas
that it creates are different. Only the incarnations of the routines
that service uni ts of a particular devicE~ are able to access the device
data area for that device.

Although the common and random access device drivers already provide this
mechanism, you may wan t to include a devlce da ta storage area in any
custom driver that you write.

WRITING DRIVERS FOR USE WITH BOTH iRMXTH 86- AND iRMX'" 88-BASED SYSTEMS

A common or random access device driver that makes no system calls is
compatible with both the iRMX 86 and iRMX 88 I/O Systems. Consequently,
such a device driver can be "par ted" be t\Jeen appl ica tions based on the
two iRMX systems.

Device Drivers 3-14

CHAPTER 4
1/0 REQUESTS

This chapter contains two k:tnds of information that writers of drivers
for devices other than terminals will find useful. Presented first are
summaries of the actions that the I/O System takes in response to the
various kinds of I/O requests that applic.ation tasks can make. Next are
three tables -- one for each type of devi.ce driver -- that show which
DUIB and IORS fields device drivers should be concerned with.

I/O SYSTEM RESPONSES TO I/O REQUESTS

This section shows which device driver procedures the I/O System calls
when it processes each of the eight kinds of I/O requests. When there
are multiple calls, the order of the calls is significant.

ATTACH DEVICE REQUESTS

When the I/O System receives the first attach device request for a
device, it makes the following calls, in order, to device driver
procedures:

The Call

Initialize I/O

Queue I/O, with the
FUNCT field of the IORS
set to F$ATTACH (=4)

The Effects of the Call

The dri.ver resets the device as a whole
and CrE!ates the device data storage
area and interrupt task(s).

The driver resets the selected unit.

When the I/O System receives an attach device request that is not the
first for the device, it makes the following call:

The Call

Queue I/O, with the
FUNCT field of the IORS
set to F$ATTACH (=4)

The Effects of the Call

The dri.ver resets the selected unit.

Device Drivers 4-1

I/O REQUESTS

DETACH DEVICE REQUESTS

When the I/O System receives a detach device request, and there is more
than one uni t of the device attached, it makes the following call:

The Call

Queue I/O, with the
FUNCT field of the IORS
set to F$DETACH (=5)

Tbe Effects of the Call

The drIver performs cleanup operations
for th:. selec ted uni t, if necessary.

When the I/O System receives a detach device request, and there is only
one attached unit on the device, it makes the following calls, in order,
to device dri ver procedurE~ s:

The Call

Queue I/O, with the
FUNCT field of the IORS
set to F$DETACH (=5)

Finish I/O

The Effects of the Call

The drIver performs cleanup operations
for the: selec ted uni t, if necessary.

The driver performs cleanup operations
for thf;: device as a whole (if
necessary) and deletes the objects
created by Initialize I/O.

READ, WRITE, OPEN, CLOSE, SEEK, AND SPECIAL REQUESTS

When the I/O System receives a read, write, open, close, seek, or special
request, it makes the following call to a device driver procedure:

The Call

Queue I/O, with the FUNCT
field of the IORS set to
F$READ (=0), F$WRITE (=1),
F$OPEN (=6), F$CLOSE (=7),
F$SEEK (=2), or F$SPECIAL
(=3), depending on the type
of the I/O request.

CANCEL REQUESTS

The Effects of the Call

The drIver performs the requested
operatIon. (F$OPEN and F$CLOSE
usually require no processing.)

When a connection is deleted while I/O mi.ght be in progress, such as when
an iRMX 86 job is deleted, the I/O System makes the following calls, in
order, to device driver procedures:

Device Drivers 4-2

The Call

Cancel I/O

Queue I/O, with the
FUNCT field of the
IORS set to F$CLOSE
(=7)

I/O REQUESTS

The Effects of the Call

The dri.ver removes from the reques t
queue all requests that contain the
same Cancel ID value as that in the
current request, and stops processing
if necessary.

When this request reaches the front of
the queue, it is simply returned to the
indicated response mailbox (exchange).

DUIB AND IORS FIELDS USED BY DEVICE DRIVERS

Tables 4-1, 4-2, and 4-3 indicate, for ea.ch type of device driver, the
fields of DUIBs and IORSs with which user-written portions of device
drivers need to be concerned.

Device Drivers 4-3

I/O REQUESTS

Table 4-1. DUIB and laRS Fields Used by Common Device Drivers

--
Attach Detach
Device Device Open

DUlB
Name
File$drivers ---Functs
Flags (-----------------

m m ill

Dev$gran m m m ----
Dev$size m m m
Device r----

Unit m m m
Dev$unit
lnit$io

Finish$io
Queue$io

f--

Cancel$io ----
Device$info$p m m m
Unit$info$p m III m
Upda te$ timeou t

f--------------

Num$buffers
Priori ty

1---------- - - ----------

---------------------Fixed$update
Max$buffers

laRS
Sta tus w w w
Uni t$ s ta tus w w w
Actual
Ac tual$fill
Device
Unit m m m
Funct r r r
Subfunct
Dev$loc
Buff$p
Count
Coun t$fill
Aux$p
Link$for
Link$back
Resp$mbox --Done w w w
Fill ------------------Cancel$id
Conn$t

---_._--

r --- is read by the device driver
w --- is written by the device driver
m --- might be read by some device dr

-------------~--------------•. ----.--

Close Read Write Seek Special

==========================:=======:==

----------------------.---1

m m m m m
m m m m m
m m m m III -----------------------------------

------------------------_.-
m m m m m

----- - ------------.---~ ---~
m m m m m ----------------------------1
m m m m m

.-----------------------------------­

---------------------------~

w w w w w
w w w w w --------------------------,----------w w

------------------------------m m m m m -----------------------------_.---
r r r r r -----------,-----

r
m m m
r r -------------------------_. __ ._-
r r --_._----------------------------

---------------------------------_.--m
--------------.-------------,--------~

---------------------------- ----

-------------------------_._--
w w w w w

-------_._-------------.. _---
------------------- .-.. -

i.vers

Device Drivers 4-4

I/O REQUESTS

Table 4-2. DUIB and laRS Fields Used by Random Access Device Drivers

Attach Detach
Device Device Open Close Read Write Seek Special

-
DUIB

--
Name ---------------
File$drivers -.-.-------.
Functs

- ~-

Flags m m m m m m m m
~-

Dev$gran III m m m m m m m -
Dev$size m m m m m m m m ------Device

-.-
Unit rn m m m m m m m --Dev$uni t --Init$io --
Finish$io --
Queue$io
Cancel$io --Device$info$p m m m m m m m m
Unit$info$p m m m m m m m m
Upda te$ timeou t
Num$buffers
Priori ty
Fixed$update
Max$buffers

laRS
Sta tus w w w w w w w w

-
Uni t$ s ta tus w w w w w w w w

.. _------_._---
Ac tual w w --
Ac tual$fill
Device ----------Unit m m m m m m m m
Funct r r r r r r r r ---------Subfunct r
Dev$loc r r r
Buff$p r r -.--
Count r r

.. _---------
Count$fill -
Aux$p m
Link$for
Link$back -----
Resp$mbox
Done w w w w w w w w
Fill
Cancel$id -
Conn$t

r --- is read by the device driver
w --- is written by the device driver
m --- might be read by some device drlvers

Device Drivers 4-5

IIO REQUES TS

Table 4-3. DUlB and IORS Fields Us,~d by Custom Device Drivers

Attach Detach
Device Device Open

DUlB
Name
File$drivers
Functs
Flags m m m
Dev$gran m m m
Dev$size m m m
Device
Unit m m m
Dev$unit
lni t$io
Finish$io
Queue$io
Cancel$io
Device$info$p m m m
Uni t$info$p m m m
Upda te$ timeou t
Num$buffers
Priority
Fixed$upda te
Max$buffers

IORS
Status w w w
Uni t$sta tus w w w
Actual
Ac tual$fill
Device
Unit m m m
Funct r r r
Subfunct
Oev$loc
Buff$p
Count
Count$fill
Aux$p
Link$for a a a
Link$back a a a
Resp$mbox r r r
Done a a a
Fill a a a
Cancel$id
Conn$t

r --- is read by the device driver
w --- is written by the device driver
m --- might be read by some device dr
a --- is available for any purpose su

driver

j

j

aose

m
m
m

m

m
m

w
w

m
r

a
a
r
a
a
m

.vers

.ting

Device Drivers 4-6

Read Write Seek Special

m m m m
m m m m
m m m m

m m m m

m m m m
m m m m

w w w w
w w w w
w w

m m m m
r r r r

m m m
r r
r r

m
a a a a
a a a a
r r r r
a a a a
a a a a

the needs of the device

CHAPTER 5
WRITINIG COMMON OR RANDOM

ACCESS DEVICE DRIVERS

This chapter contains the calling sequences for the procedures tha t you
must provide when writing a common or random access device driver. Where
possible, descriptions of the duties of these procedures accompany the
calling sequences.

In addition to providing information about the procedures that common or
random access drivers must supply, this ehapter describes the purpose and
calling sequence for each of five procedures, two of which random access
device drivers in iRMX 86 applications must call under certain conditions.

INTRODUCTION TO PROCEDURES THAT DEVICE DRIVERS MUST SUPPLY

The routines that are provided by the I/O System and that the I/O System
calls (INIT$IO, FINISH$IO, QUEUE$IO, CANCEL$IO, and INTERRUPT$TASK for
iRMX 86 systems) (RAD$INIT$IO, RAD$FINISH$IO, RAD$QUEUE$IO,
RAD$CANCEL$IO, and INTERRRUPT$TASK for iH.MX 88 systems) constitute the
bulk of a common or random access device driver. These routines, in
turn, make calls to device-dependent rou tines tha t you mus t supply.
These device-dependent routines are described here briefly and then are
presented in detail:

A device initialization procedure. This procedure must perform any
ini tializa tion func tions neces sary to ge t the device ready to proces s
I/O requests. INIT$IO calls this procedure.

A device finish procedure. This procedure must perform any
necessary final processing on the device so that the device can be
detached. FINISH$IO calls this procedure.

A device start procedure. This procE~dure must start the device
processing any possible I/O function.. QUEUE$IO and INTERRUPT$TASK
(the I/O System-supplied interrupt task) call this procedure.

A device stop procedure. This procedure must stop the device from
processing the current I/O function, if that function could take an
indefinite amount of time. CANCEL$IO calls this procedure.

A device interrupt procedure. fhis procedure must do all of the
device-dependent processing that results from the device sending an
interrupt. INTERRUPT$TASK calls this procedure.

Device Drivers 5-1

I

I

WRITING C0I1MON OR RANDOM ACCESS DEVICE DRIVERS

DEVICE INITIALIZATION PROCEDURE

The INIT$IO procedure calls the user-written device initialization
procedure to initialize the device. The format of the call to the
user-written device initialization procedure is as follows:

CALL device$init(duib$p, ddata$p, status$p);

where:

device$init

duib$p

ddata$p

status$p

Name of the device initialization procedure. You can
use any name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the Devic'E! Information Table.

POINTER to the DUIB of the device-unit being
attached. From this DUIB, the device initialization
procedure can obtain the Device Information Table,
where information such as the I/O port address is
stored.

POINTER to the user portion of the device's da ta
storage area. You must specify the size of this
portion in the Device Information Table for this
device. The device initialization procedure can use
this data area for whatever purposes it chooses.
Possible uses for this data area include local flags
and buffer areas.

POINTER to a WORD in 'Arhich the device ini tializa tion
procedure must return the status of the initialization
operation. It should return the E$OK condition code
if the initialization is successful; otherwise it
should return the appropriate exceptional condition
code. If initialization does not complete
successfully, the devi.ce initialization procedure must
ensure tha t any resou"C'ces it crea tes are dele ted.

If you have a device that does not need to be initialized before it can
be used, you can use the default device l.nitialization procedure supplied
by the I/O System. The name of this pro(~:edure is DEFAULT$INIT. Specify
this name in the Device Informa tion Tabl.:. DEFAULT$INIT does nothing bu t
return the E$OK condition code.

DEVICE FINISH PROCEDURE

The FINISH$IO procedure calls the user-written device finish procedure to
perform final processing on the device, after the last I/O request has
been processed. The format of the call to the device finish procedure is
as follows:

CALL device$finish(duib$p, ddata$p);

Device Drivers 5-2

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

where:

device$finish Name of the device finish procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the Device Information Table.

duib$p POINTER to the DUIB of the device-unit being
detached. From this DUIB, the device finish procedure
can obtain the Device Information Table, where
information such as the I/O port address is stored.

dda ta$p POINTER to the user portion of the device's da ta
storage area. The device finish procedure should
obtain, from this data area, identification of any
resources other user-written procedures may have
created, and delete these resources.

If you have a device that does not require any final processing, you can
use the default device finish procedure supplied by the I/O System. The
name of this procedure is DEFAULT$FINISH. Specify this name in the
Device Information Table. DEFAULT$FINISH merely returns control to the
caller. It is normally used when the default initialization procedure
DEFAULT$INIT is used.

DEVICE START PROCEDURE

Both QUEUE$IO and INTERRUPT$TASK make calls to the device start procedure
to start an I/O function. QUEUE$IO calls this procedure on receiving an
I/O request when the request queue is empty. INTERRUPT$TASK calls the
device start procedure after it finishes one I/O request if there are one
or more I/O requests on the queue. The format of the call to the device
start procedure is as follows:

CALL device$start(iors$p, duib$p, ddata$p);

where:

device$ star t

iors$p

Name of the device start procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the Device Information Table.

POINTER to the IORS of the request. The device start
procedure must access the IORS to obtain information
such as the type of I/O function requested, the
address on the device of the byte where I/O is to
commence, and the buffer address.

Device Drivers 5-3

duib$p

ddata$p

WRITING COMtl10N OR RANDOM ACCESS DEVICE DRIVERS

POINTER to the DUIB of the device-unit for which the
I/O request is intendBd. The device start procedure
can use the DUIB to aecess the Device Information
Table, where informatIon such as the I/O port address
is stored.

POINTER to the user portion of the device's data
storage area. The device start procedure can use this
data area to set flags or store data.

The device start procedure must do the following:

• It must be able to start the device processing any of the
functions supported by the devicB and recognize tha t requests for
nonsupported functions are error conditions.

• If it transfers any data, it must update the IORS.ACTUAL field to
reflect the total number of bytes of data transferred (that is,
if it transfers 128 by tes of da ta, it mus t pu t 128 in the
IORS.ACTUAL field).

• If an error occurs when the devic:e start procedure tries to start
the device {such as on an write request to a write-protected
disk}, the device start procedure must set the IORS.STATUS field
to indicate an E$IO condition and the 10RS.UNIT$STATUS field to a
nonzero value. The lower four b:lts of the field should be set as
indicated in the "laRS Structure'" section of Chapter 2. The
remaining bits of the field can be set to any value (for example,
the iSBC 204 device driver returns the device's result byte in
the remainder of this field). I:E the function completes without
an error, the device start procedure must set the 10RS.STATUS
field to indica te an E$OK condi t:lon.

• If the device start procedure determines that the I/O request has
been processed completely, eithelc because of an error or because
the request has completed successfully, it must set the 10RS.DONE
field to TRUE. The I/O request will not always be completed; it
may take several calls to the device interrupt procedure before a
request is completed. However,:if the request is finished and
the device start procedure does not set the 10RS.DONE field to
TRUE, the device driver suppor t :cou tines wai t un til the device
sends an interrupt and the devic(~ interrupt procedure sets
IORS.DONE to TRUE, before determ.1.ning that the request is
actually finished.

DEVICE STOP PROCEDURE

The CANCEL$IO procedure calls the user-written device stop procedure to
stop the device from performing the curr(~n t I/O func tion. The forma t of
the call to the device stop procedure is as follows:

Device Drivers 5-4

WRITING COMt10N OR RAND01'1 ACCESS DEVICE DRIVERS

CALL device$stop(iors$Pll duib$p, ddata$p);

where:

device$ stop

iors$p

duib$p

ddata$p

Name of the device stop procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
this name in the Devic.e Informa tion Table.

POINTER to the IORS of the reques t. The device stop
procedure needs this i.nforma tion to de termine wha t
type of function to stop.

POINTER to the DUIB of the device-unit on which the
I/O function is being performed.

POINTER to the user portion of the device IS da ta
storage area. The device stop procedure can use this
area to store data, if necessary.

If you have a device which guarantees that all I/O requests will finish
in an acceptable amount of time, you can omit writing a device stop
procedure and use the default procedure supplied with the I/O System.
The name of this procedure is DEFAULT$STOP. Specify this name in the
Device Information Table. DEFAULT$STOP simply returns to the caller.

DEVICE INTERRUPT PROCEDURE

INTERRUPT$TASK calls the user-written device interrupt procedure to
process an interrupt that just occurred. The format of the call to the
device interrupt procedure is as follows:

CALL device$in terrupt(iors$p, duib$p II dda ta$p);

where:

device$interrupt

iors$p

duib$p

Name of the deviee interrupt procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include this name in the Device Information
Table.

POINTER to the IO&'S of the request being
processed. The device interrupt procedure must
update information in this IORS. A value of zero
for this parametE~r indica tes ei ther tha t there
are no requests on the request queue and the
interrupt is extraneous or that the unit is
completing a seek or other long-term operation.

POINTER to the DUIB of the device-unit on which
the I/O function was performed.

Device Drivers 5-5

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

dda ta$p POINTER to the user por tion of the device IS da ta
storage area. The device interrupt procedure can
upda te flags in t.his da ta area or re trieve da ta
sent by the device.

The device interrupt procedure must do the following:

• It must determine whe ther the interrupt resul ted from the
completion of an I/O function by the correct device-unit.

• If the correct device-unit did send the interrupt, the device
interrupt procedure must determine whether the request is

finished. If the request is finIshed, the device interrupt
procedure must set the IORS.DONE field to TRUE.

• It must process the interrupt. This may involve setting flags in
the user portion of the da ta s tOJcage area, tranferring da ta
written by the device to a buffer, or some other operation.

• If an error has occurred, it must set the IORS.STATUS field to
indicate an E$IO condition and the IORS.UNIT$STATUS field to a
nonzero value. The lower four bIts of the field should be set as
indicated in the "IORS Structure" section of Chapter 2. The
remaining bits of the field can be set to any value (for example,
the iSBC 204 and 206 device drivE~rs re turn the device IS resul t
byte in the remainder of this field). It must also set the
IORS • DONE field to TRUE, indica ting tha t the reques t is finished
because of the error.

• If no error has occurred, it must set the IORS.STATUS field to
indicate an E$OK condition.

PROCEDURES THAT iRMXT" 86 RANDOM ACCESS DRIVERS HUST CALL

There are several procedures that random access drivers in iRMX 86
applications can call under certain well--defined circumstances. They are
NOTIFY, SEEK$COMPLETE, and procedures for the long-term operations
(BEGIN$LONG$TERMOP, ENDLONG$TERM$OP, and GET$IORS).

NOTIFY PROCEDURE

Whenever a door to a flexible diskette drive is opened or the STOP button
on a hard disk drive is pressed, the devlce driver for that device must
notify the I/O System that: the device is no longer available. The device
driver does this by calling the NOTIFY procedure. When called in this
manner, the I/O System stops accepting I/O requests for files 011 that
device uni t. Before the device uni t can .again be availa ble for I/O
requests, the application must detach it by a call to
A$PHYSICAL$DETACH$DEVICE and reattach it by a call to
A$PHYSICAL$ATTACH$DEVICE. Moreover, the application must obtain new file
connections for files on the device unit.

Device Drivers 5-6

WRITING CO~l\j,O(~ OR RANDOM ACCESS DEVICE DRIVERS

In addi tion to not accepting I/O requests for files on tha t device uni t,
the I/O System will respond by sending an object to a mailbox. For this
to happen, however, the object and the mailbox must have been established
for this purpose by a prior call to A$SPECIAL, with the spec$func
argument equal to FS$NOTIFY (2). (The A$SPECIAL system call is described
in the BASIC I/O SYSTEM REFERENCE MANUAL,,) The task that awaits the
object at the mailbox has the responsibility of detaching and reattaching
the device unit and of creating new file connections for files on the
device uni t.

The syntax of the NOTIFY procedure is as follows:

CALL NOTIFY(unit, ddata$p);

where:

unit BYTE con taining the uni t number of the uni t on the
device that went off-line.

dda ta$p POINTER to the user portion of the device's data
storage area. This is the same pointer that is passed
to the device driver by way of either the device$start
or the device$interrupt procedure.

SEEK$COMPLETE PROCEDURE

In most applications, it is desirable to overlap seek operations (which
can take relatively long periods of time) with other operations. To
facilitate this, a device driver receiving a seek request can take the
following actions in the following order:

1. The device start procedure starts the requested seek operation.

2. Depending on the kind of device, either the device start
procedure or the device interrupt procedure sets the DONE flag in
the IORS to TRUE (OFFH).

• Some devices send only one interrupt in response to a seek
reques t -- the one tha t indiea tes the comple tion of the
seek. If your device operates 1n this manner, the device
star t procedure se ts the DONE flag to TRUE (OFFH) immedia tely.

• Some devices send two interrupts in response to a seek
request -- one upon receipt of the request and one upon
comple tiOll of the seek. If your device opera tes in this
manner, the device start proeedure leaves the DONE flag in
the IORS set to FALSE (0).

When the first interrupt from the device arrives, the device
in terrup t procedure se ts the DONE flag to TRUE (OFFH).

Device Drivers 5-7

I

I

WRITING COMMON OR RAND01'1 ACCESS DEVICE DRIVERS

3. When the interrupt from the devi.l:!e arrives (the one tha t
indica tes the comple tion of the seek), the device in terrupt
procedure calls the SEEK$COMPLETg procedure to signal the
completion of the seek operation.

This process enables the device driver to handle I/O requests for other
units on the device while the seek is in progress, thereby increasing the
performance of the I/O System.

The syn tax of the call to SEEK$COMPLETE :l s a s follows:

CALL SEEK$COMPLETE(unit, ddata$p);

where:

unit

dda ta$p

BYTE con taining the number of the uni t on the device
on which the seek operation is completed.

POINTER to the user por tion of the device's da ta
storage area. This if; the same poin ter tha t the
random access support routines passes to the device
start and device interrupt procedures.

No te tha t if your device drl ver calls thE~ SEEK$COt1PLETE procedure when a
seek operation is completed, the CYLINDER$SIZE field of the Unit
Information Table for the device unit should be configured greater than
zero. On the other hand, if the driver does not call SEEK$COMPLETE, then
CYLINDER$SIZE must be configured to zero.

PROCEDURES FOR OTHER LONG--TERM OPERATIONS

The iRMX 86 Opera ting Sys tern provides thr'ee procedures which device
drivers can use to overlap long-term operations (such as tape reWinds)
wi th 0 ther I/O opera tions. The procedur,::s are BEGIN$LONG$TERH$OP,
END$LONG$TERM$OP, and GET$IORS. These plcocedures are intended
specifically for use with devices that do not support seek operations
(such as tape drives).

BEGIN$LONG$TERM$OP Procedure

The BEGIN$LONG$TERl1$OP procedure informs the random access support
rou tines tha t a long-term opera tion is in progress, and tha t the support
routines do not have to wai t for the opera tion to comple te before
servicing other units on the device. Calling BEGIN$LONG$TERM$OP allows
the con troller to service read and wri te reques ts on 0 ther uni ts of the
device while the long-term opera tion is :In progress.

Device Drivers 5-8

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

To use BEGIN$LONG$TERM$OP, the device driver receiving the request for
the long- term opera tion should take the following ac tions:

1. The device start procedure starts the long-term operation.

2. Depending on the kind of device, either the device start
procedure or the device interrupt procedure sets the DONE flag in
the IORS to TRUE (OFFH).

• Some devices send only one interrupt in response to a request
for a long-term opera tion -- the one tha t indica tes the
completion of the operation. If your device operates in this

manner, the device start proc.edure sets the DONE flag to TRUE
(OFFH) immediately.

• Some devices send two interrupts in response to a request for
a long-term operation -- one upon receipt of the request and
one upon completion of the operation. If your device
operates in this manner, the device start procedure leaves
the DONE flag in the IORS set to FALSE (0). When the first
interrupt from the device arrives, the device interrupt
procedure sets the DONE flag to TRUE (OfFtI).

3. The procedure that just set the DONE flag to TRUE (either the
device start or device interrupt procedure) calls
BEGIN$LONG$TERM$OP.

The syn tax of the call to BEGIN$LONG$TERt1$OP is as follows:

CALL BEGIN$LONG$TERM$OP(unit, ddata$p);

where:

unit BYTE containing the number of the unit on the device
which is performing the long-term operation.

ddata$p POINTER to the user portion of the device's data
storage area. This is the same pointer that the
random access support routines passes to the device
start and device interrupt procedures.

If your driver calls BEGlN$LONG$TERM$OP, it must also call
END$LONG$TERM$OP when the device sends an interrupt to indicate the end
of the long-term operation.

END$LONG$TERM$OP Procedure

The END$LONG$TERM$OP procedure informs the random access support routines
that a long-term operation has completed. A driver that calls
BEGIN$LONG$TE1ll'l$OP must also call END$LONG$TERM$OP or the driver cannot
further access the uni t tha t performed the long-term opera tion.

Device Drivers 5-9

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

Specifically, when the unit sends an int(~rrupt indicating the end of the
long-term operation, the device interrupt procedure must call
END$LONG$TERM$OP.

The syntax of the call to END$LONG$TERM$OP is as follows:

CALL END$LONG$TERM$OP(unit, ddata$p);;

where:

unit

ddata$p

GET$IORS Procedure

BYTE containing the number of the unit on the device
which performed the long-term operation.

POINTER to the user portion of the device's data
storage area. This iB the same pointer that the
random access support routines passes to the device
start and device interrupt procedures.

Long-term operations on some units invobre multiple operations. For
example, performing a rewind on some tapc~ drives requires you to perform
a rewind and a read file mark. The GET$IORS procedure allows your driver
procedures to handle this situation without forcing you to write a cllstom
driver for each device that is different~

GET$IORS allows your driver procedure to obtain the token of the IORS for
the previous long-term request, so that :It can modify the IORS to
initiate new I/O requests. The IORS$P that INTERRUPT$TASK passed to the
device interrupt procedure is set to zero (for units busy performing a
seek or other long-term operation). Therefore, the driver can only
access the IORS in this manner.

To use GET$IORS, the device driver performing the long-term operation
should take the following actions:

1. The device driver starts the long-term operation and calls
BEGIN$LONG$TERM$OP in the usual manner (as described in the
"BEGIN$LONG$TERM$OP Procedure to SE!ct ion).

2. When the unit sends an interrupt indicating the end of the
long-term operation, the device jlnterrupt procedure calls
GET$IORS to obtain the IORS.

3. The device interrupt procedure modifies the FUNCT and SUBFUNCT
fields of the IORS to specify thE! next operation to perform. It
also sets the DONE flag to FALSE (0).

4. The device interrupt procedure calls END$LONG$TERM$OPERATION.

The syntax of the call to GET$IORS is as follows:

iors$base = GET$IORS(unit, ddata$p);

Device Drivers 5-10

where:

iors$base

unit

ddata$p

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

SEL,ECTOR in which the random access support
routines return the base portion of the IORS.
Use the PL/M-86 built-in procedure BUILD$PTR
(specifying an offset of 0) to obtain a pointer
to the IORS.

BYTE containing the number of the unit on the
device which performed the long-term operation.

POINTER to the user portion of the device's data
storage area. This is the same pointer that the
random access support routines passes to the device
s tart and device in tel~rupt procedures.

FORMATTING CONSIDERATIONS

If you write a random access driver and you intend to use the Human
In terface FORMAT command (for iRMX 86 sys terns) or the RQ$FORl'1AT call (for
iRMX 88 systems) to format volumes on that device, your driver routines
must set the status field in the IORS in the manner that the FORMAT
command expects.

When forma t ting volumes, the FORt"1AT command issues sys tem calls
(A$SPECIAL or S$SPECIAL) to format each track. It knows that formatting
is complete when it receives an E$SPAC£ exception code in response. To
be compa tible wi th FORMAT, your driver mus t also re turn E$SPACE.

In particular, if your driver must perform some operation on the device
to forma tit, your device interrupt procedure mus t se t the IORS. STATUS to
E$SPAC£ after the last track has been formatted.

However, if the device requires no physi1cal forma tting (for example, when
formatting is a null operation for that device), your device start
procedure can set IORS.STATUS to E$SPACE immediately after being called
to start the formatting operation.

Device Drivers 5-11

· ()
CHAPTER 6

WRITING A CUSTOM
DEVICE DRIVER

Custom device drivers are drivers that you create in their entirety
because your device doesn't fit into either the common or random access
device category, either because the devic:e requires a priority-ordered
queue, multiple interrupt levels, or because of some other reasons that
you have determined. When you write a custom device driver, you must
provide all of the features of the driver, including creating and
deleting resources, implementing a request queue, and creating an
interrupt handler. You can do this in any manner that you choose as long
as you supply the following four procedures for the I/O System to call:

An Initialize I/O Procedure. This procedure must initialize the
device and create any resources needed by the procedures in the
driver.

A Finish I/O Procedure. This procedure must perform any final
processing on the device and dele te lcesources crea ted by the
remainder of the procedures in the driver.

A Queue I/O Procedure. This procedure must place the I/O requests on
a queue of some sort, so that the device can process them when it
becomes available.

A Cancel I/O Procedure. This procedure must cancel a previously
queued I/O request.

In order for the I/O System to communicate with your device driver
procedures, you must provide the addresses of these four procedures for
the DUIBs that correspond to the units of the device.

The next four sections describe the forma t of each of the I/O System
calls to these four procedures. Your procedures must conform to these
forma ts.

INITIALIZE I/O PROCEDURE

The iRMX 86 I/O System calls the Initialize I/O procedure when an
application task makes an RQAPHYSICAL$ATTACH$DEVICE system call and no
units of the device are currently attached. The iRMX 88 I/O System calls
the Initialize I/O procedure when an application task attaches or creates
a file on the device and no other files on the device are currently
attached. In either case, the I/O System calls the Initialize I/O
procedure before calling any other driver procedure.

Device Drivers 6-1

WRITING A CUSTOM DEVICE DRIVER

The Initialize I/O procedure must perform any initial processing
necessary for the device or the driver. If the device requires an
interrupt task (or region or device data area, in the case of iRMX 86
drivers), the Ini tialize I/O procedure should crea te it (them).

The format of the call to the Initialize I/O procedure is as follows:

CALL init$io(duib$p, ddata$p, status$,p);

where:

init$io

duib$p

ddata$p

status$p

Name of the lni tialize, I/O procedure.
name for this procedure as long as it
conflict with other procedure names.
however, provide its starting address
all device-units that it services.

You can use any
does not
You mus t,
in the DUIBs of

POINTER to the DUIB of the device-unit for which the
request is intended. The init$io procedure uses this
DUIB to determine the characteristics of the unit.

POINTER to a WORD in w'hich the ini t$io procedure can
place the location of a data storage area, if the
device driver needs such an area. If the device
driver requires that a data area be associated with a
device (to contain the head of the I/O queue, DUIS
addresses, or status information), the init$io
procedure should crea te this area and save its
location via this pointer. If the driver does not
need such a data area, the init$io procedure should
return a zero via this pointer.

POINTER to a WORD in which the init$io procedure must
place the status 0 f the ini tialize opera tion. If the
operation is completed successfully, the init$io
procedure must return the E$OK condition code.
Otherwise it should return the appropriate exception
code. If the init$io procedure does not return the
E$OK condition code, it must delete any resources that
it has crea ted.

FINISH I/O PROCEDURE

The iRMX 86 I/O System calls the Finish I/O procedure after an
application task makes an RQAPHYSICAL$DETACH$DEVICE system call to
detach the last unit of a device. The iRMX 88 I/O System calls the
Finish I/O procedure when an application task detaches or deletes the
last remaining file connec, tion for the device.

The Finish I/O procedure performs any necessary final processing on the
device. It must delete all resources created by other procedures in the
device driver and must perform final processing on the device itself, if
the device requires such processing.

Device Drivers: 6-2

WRITING A CUSTOM DEVICE DRIVEK

The forma t of the call to the Finish I/O procedure is as follows:

CALL finish$io(duib$p, ddata$t);

where:

finish$io

duib$p

dda ta$t

QUEUE I/O PROCEDURE

Name of the Finish I/O procedure. You can specify
any name for this procedure as long as it does not
conflict with other procedure names. You must,
however, provide its starting address in the DUIBs
of all device-units that it services.

POINTER to the DUIB of the device-unit of the
device being detached. The finish$io procedure
needs this DUIB in order to determine the device on
which to perform the final processing.

S ELECTOR con ta ining; the loca tion 0 f the da ta
storage area originally created by the init$io
procedure. The finish$io procedure must delete
this resource and any others created by driver
routines.

The I/O System calls the Queue I/O procedure to place an I/O request on a
queue, so that it can be processed when the device is not busy. The
Queue I/O procedure must actually start the processing of the next I/O
request on the queue if the device is not busy. The format of the call
to the Queue I/O procedure is as follows:

CALL queue$io(iors$t, duib$p, ddata$t);

where:

queue$io

iors$t

Name of the Queue I/O procedure. You
name for this procedure as long as it
conflict with other procedure names.
however, provide its starting address
of all device-units that it services.

can use any
does not
You mus t,
for the DUIBs

SELECTOR containing the location of an IORS. This
IORS describes the request. When the request is
processed, the driver (though not necessarily the
queue$io procedure) must fill in the status fields
and send the IORS to the response mailbox
(exchange) indica ted in the IORS. Chap ter 2
describes the format of the IORS. It lists the
information that the I/O System supplies when it
passes the IORS to the queue$io procedure and
indica tes the fields of the IORS tha t the device
driver must fill in.

Device Drivers 6-3

duib$p

dda ta$ t

CANCEL I/O PROCEDURE

WRITING A CUSTOM DEVICE DRIVER

POINTER to the DUIE; of the device-unit for which
the request is intended.

SELECTOR con taining the loca tion of the da ta
storage area originally created by the init$io
procedure. The que:ue$io procedure can place any
necessary information in this area in order to
update the request queue or status fields.

The I/O System can call the Cancel I/O procedure in order to cancel one
or more previously queued I/O requests. The iRMX 88 I/O System does not
call Cancel I/O, but in the iRMX 86 environment Cancel I/O is called
under ei ther of the following two condi ti.ons :

• If the user makes an RQAPHYSICAL$DETACH$DEVICE system call and
specifies the hard detach option (refer to the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL for a description of this call). This
system call forcibly detaches all objects associated with a
device-uni t.

• If the job containing the task which made an I/O request is
deleted. The I/O System calls the Cancel I/O procedure to remove
any requests that tasks in the de.leted job might have made.

If the device cannot guarantee that a request will be finished within a
fixed amoun t of time (such as wai ting for input from a terminal
keyboard), the Cancel I/O procedure must actually stop the device from
processing the request. If the device guarantees that all requests
finish in an acceptable amount of time, the Cancel I/O procedure does not
have to stop the device itself, but only removes requests from the queue.

The format of the call to the Cancel I/O procedure is as follows:

CALL cancel$io(cancel$id, duib$p, ddata$t);

where:

cancel$id

cancel$id

Name of the Cancel I/O procedure. You can use any
name for this procedure as long as it doesn't
conflic t wi th 0 ther procedure names. You mus t,
however, provide its starting address in the DUIBs of
all device-units that it services.

WORD containing the id value for the I/O requests
that are are to be cancelled. Any pending requests
with this value in the cancel$id field of their
IORS's must be removed from the queue of requests by
the Cancel I/O procedure. Horeover, the I/O System
places a CLOSE request with the same cancel$id value
in the queue. The CLOSE request must not be
processed until all other requests with that
cancel$id value have been re turned to the I/O Sys tem.

Device Drivers 6-4

duib$p

dda ta$ t

WRITING A CUSTOM DEVICE DRIVER

POINTga to the OUIS of the device-uni t for which
the request cancellation is intended.

SELECTOR containing the location of the data
storage area originally created by the init$io
procedure. This area may con tain the reques t queue.

IMPLEMENTING A REQUEST QUEU~

Making I/O requests via system calls and the actual processing of these
requests by I/O devices are asynchronous activities. When a device is
processing one request, many more can be accumulating. Unless the device
driver has a mechanism for placing I/O requests on a queue of some sort,
these requests will become lost. The common and random access device
drivers form this queue by (~rea ting a dou.bly linked list. The lis t is
used by the QUEUE$IO and CANCEL$IO procedures, as well as by
INTERRUPT$TASK.

Using this mechanism of the doubly linkedl list, common and random access
device drivers implement a FIFO queue for I/O requests. If you are
writing a custom device driver, you might want to take advantage of the
LINK$FOR and LINK$BACK fields that are provided in the IORS and implement
a scheme similar to the following for queuing I/O requests.

Each time a user makes an I/O request, the I/O System passes an IORS for
this request to the device driver, in particular to the Queue I/O
procedure of the device driver. The common and random access driver
Queue I/O procedures make use of the LINK$FOR and LINK$BACK fields of the
laRS to link this laRS together with IORSs for other requests that have
not yet been processed.

This queue is set up in the following manner. The device driver routine
that is actually sending data to the controller accesses the first laRS
on the queue. The LINK$FOR field in this IORS points to the next IORS on
the queue. The LINK$FOR field in the second laRS points to the third
IORS on the queue, and so forth until, in the last IORS on the queue, the
LINK$FOR field points back to the first 10RS on the queue. The LINK$BACK
fields operate in the same manner. The LINK$BACK field of the last IORS
on the queue po in ts to the previous laRS.. The LINK$BACK field of the
second to las t IORS poin ts to the third to las t laRS on the queue, and so
forth, until, in the first laRS on the queue, the LINK$BACK field points
back to the last IORS in the queue. A queue of this sort is illustrated
in Figure 6-1.

The device driver can add or remove requE~s ts from the queue by adjusting
LINK$FOR and LINK$BACK pointers in the IORSs.

Device Drivers 6-5

linkSback

WRITING A CUST011 DEVICE DRIVER

S.cond IORS
on queue

L'-----

Figure 6-1. Request Queue

L ••• IORS
on qu

IInkSIor

IInkSback

To handle the dual problems of locating the queue and ascertaining
whether the queue is empty, you can use a variable such as head$queue.
If the queue is empty, head$queue contains the value O. Otherwise,
head$queue contains the address of the first IORS in the queue.

Device Drivers 6-6

x-679

• c'<) CHAPTER 7
TERMINAL DRIVERS

Both the iIDiX 86 and iRMX 88 Operating Systems supply a Terminal Handler
that can serve as an interface between the Nucleus and a terminal
device. This interface is minimal and allows limited interaction between
the terminal operator and the Operating S:ystem. However, the iRMX 86
Operating System also provides an interfa.ce to terminals via the Basic
I/O System. This interface allows tasks to use the power and convenience
of I/O System calls when communica ting wi. th terminals. To add support
for new terminal controllers in the Basie I/O System, you can write
device drivers, which provide the software link between the Operating
System software (called the Terminal Support Code) and the terminal.

The iRMX 88 Execu ti ve does no t suppor t te~rminal drivers as ou tlined in
this chapter.

This chapter explains how to write a terminal driver whose capabilities
include handling single-character I/O, parity checking, answering and
hanging up functions on a modem, and automatic baud rate searching for
each of several terminals. Such a driver is neither common, random
access, nor custom. Consequently, this ehapter is more self-contained
than Chapters 5 and 6; it describes the data structures used by terminal
drivers, as well as the procedures that you must provide.

TERMINAL SUPPORT CODE

As in the case of common and random access drivers, the I/O System
provides the procedures that the I/O System invokes when performing
terminal I/O. They are known collectively as the Terminal Support Code.
Figure 7-1 shows schema tically the rela ti.onships be tween the various
layers of code tha t are involved in drivlng a terminal.

Among the duties performed by the Terminal Support Code are managing
buffers and maintaining several terminal-related modes.

Device Drivers 7-1

I

TERMINAL DRIVERS

APPLICATION TASK

BASIC 1/0 SYSTEM

TERMINAL SIUPPORT
CODE (TSC)

TERMINAL [-RIVER

TERMINAL

0952

Figure 7-1. Software Layers Supporting Terminal I/O

DATA STRUCTURES SUPPORTING TERMINAL I/O

The principal data structures supporting terminal I/O are the Device-Unit
Informa tion Block (DUIB), Device Informa t.ion Table, Uni t Informa tion
Ta ble, and the Terminal Support Code (TSC:) da ta s truc ture. These da ta
structures are defined in the next few paragraphs.

DUIB

This section lists the elements that make up a DUIB for a device-unit
that is a terminal. When creating DUIBs for iRMX 86 applications, code
them in the format shown here (as assembly-language structures). If you
give the iRMX 86 ICU the pa thname of your Uni t Informa tion Table field,
the iRMX 86 Interactive Configuration Uti.lity (ICU) includes your DUIB
file in the assembly of IDEVCF.A86 (a Basic I/O System configuration
file). IDEVCF .A86 con taius the defini tion of the s truc ture.

Device Driver:; 7-2

DEFINE DUIB <
& NAME,
& 1,
& OFBH,
& 0,
& 0,
& 0,
& DEVICE,
& UNIT,
& DEV$UNIT,
& TSINITIO,
& TSFINISHIO,
& TSQUEUEIO,
& TSCANCELIO,
& DEVICE$INFO$P,

& UNIT$INFO$P,

& OFFFFH,
& 0,
& PRIORITY,
& 0,
& 0,
& RESERVED,
& >

DEVICE INFORMATION TABLE

TERMINAL DRIVeRS

byte (1,4)
word - file$drivers - (physical)
byte - functs - (no seek)
byte - flags - (no t disk)
word - dev$gran - (not random access)
dword - dev$size - (not storage device)
byte - (device dependent)
byte - (unit dependent)
word - (device and unit dependent)
word - init$io - (terminal device)
word - finish$io - (terminal device)
word - queue$io - (terminal device)
word - cancel$io - (terminal device)
pointer - (address of
TERMINAL$DEVICE$INFO)
pointer - (address of
TERMINAL$UNIT$INFO)
word - update$timeout - (not disk)
word - num$buffers - (none)
byte - (I/O System dependent)
byte - fixed$update - (none)
byte - max$buffers - (none)
byte

A terminal's Device Information Table provides information about a
terminal controller. When creating these tables, code them in the format
shown here (as assembly-language declarations). If you give the iRMX 86
ICU the pathname of your Unit Information Table field, the ICU includes
the file in the assembly of IDEVCF.A86 (a Basic I/O System configuration
file) •

The fields TERM$INIT, TER1'i$FINISH, TERM$SETUP, TERM$OUT, TERM$ANSWER,
TERM$HANGUP, and TERM$CHECK contain the names of user-supplied procedures
whose duties are described later in this chapter. When creating the file
containing your Deiice Information Tables, specify external declarations
for these user-supplied procedures. This: allows the code for these
user-supplied procedures to be included in the generation of the I/O
System. For example, if your procedures are named TERM$INIT,
TERM$FINISH, TERM$SETUP, TERM$OUT, TERM$ANSWER, TERM$HANGUP, and
TERM$CHECK, include the following declara.tions in the file containing
your Device Information Tables:

extrn term$init: near
extrn term$finish: near
extrn term$setup: near
extrn term$out: near
extrn term$answer: near
extrn term$hangup: near
extrn term$check: near

Device Drivers 7-3

I

TERMINAL DRIVERS

Use the following forma t when coding your Device Informa tion Tables:

TERMINAL$DEVICE$INFORMATION
DW NUM$UNITS

where:

DW DRIVER$DATA$SIZE
DW STACK$SIZE
DW TERM$INIT
DW 'fERM$FINISH
DW TER11$S ETU P
DW '£ER11$O UT
DW TERM$ANSWER
DW TERM$HANGUP
DW NUM$INTERRUeTS
INTERRUPTS

DW INTERKUPT$LEVEL
DW TERM$CHECK

DRIVER$INFO
DB DRIVER$INFO$l
DB DRIVER$INFO$2

define interrupt$level and
term$check for each interrupt
level

NUM$UNITS WORD containing the number of terminals on this
terminal controller.

DRIVER$DATA$SIZE

STACK$SIZE

TERl.1$INIT

TERM$FINISH

TERM$SETUP

WOKD containing the number of bytes in the
driver's data area pointed to by the
USER$DATA$PTR field of the TSC Data structure.

WORD containing the number of bytes of stack
needed collectively by the user-supplied
procedures in this device driver.

woaD specifying the address of this controller's
user-written terminal initialization procedure.
When creating the Device Information Table, use
the procedure name as a variable to supply this
information.

WORD specifying the address of this controller's
user-written terminal finish procedure. When
creating the Device Information Table, use the
procedure name as a variable to supply this
informa tion.

WORD specifying the address of this controller's
user-written terminal setup procedure. When
creating the Device Information Table, use the
procedure name as a variable to supply this
informa tion.

Device Drivers 7-4

TERM$OUT

TERM$ANSWER

TERM$HANGUP

NUM$INTEKRUPTS

INTERRUPT$LEVEL

TER1'1$CHECK

DRIVER$INFO

TERMINAL DRIVERS

WORD specifying the address of this controller's
user-written terminal output procedure. When
creating the Devi.ce Information Table, use the
procedure name as a variable to supply this
inf()rma tion •

WORD specifying the address of this controller's
user-written terminal answer procedure. When
creating the Devi.ce Information Table, use the
procedure name as a variable to supply this
inf()rma tion.

WORD specifying the address of this controller's
user-written terminal hangup procedure. When
creating the Devi.ce Informa tion Table, use the
procedure name as: a variable to supply this
information.

WORD containing the number of interrupt lines
that this controller uses. You must define an
INTERRUPT$LEVEL and TERM$CHECK word for each
interrupt.

WORDs containing the level numbers of the
interrupts that are associated with the terminals
driven by this controller. You must supply one
such word for each interrupt the controller uses.

WORDs specifying the addresses of this
controller's user-written terminal check
procedures. Each r.cERM$CHECK field specifies the
terminal check procedure for the INTERRUPT$LEVEL
immf~dia tely prece~ding it. When crea ting the
Dev:tce Informa tion Table, use the procedure names
as the variables to supply this information. If
any of the TERM$CHECK words equals zero, there is
no term$check procedure associated with the
corresponding interrupt level. Instead,
interrupts on these levels are assumed to be
output ready interrupts which will cause TERM$OUT
to be called.

BYTES or WORDS containing driver-dependent
informa tion.

Device Drivers 7-5

TERMINAL DRIVERS

NOTE

Usually, terminal drivers are concerned
only with the DRIVER$INFO fields of the
Device Information Table. Therefore, a
terminal driver can d(~clare a s truc ture
of the following form when accessing
this data:

DECLARE
TERMINAL$DEVICE~~ INFO STRUCTURE(

FILLER(nbr$of~~words) WORD,
DRIVER$INFO$l BYTE,
DRIVER$INFO$2 BYTE,

DRIVER$INFO$N BYTE) ;

where nbrofwords equals 10 +
2*(number of interrupt levels used by
the driver)

You must supply the TERM$INIT, TERM$FINISH, TERr1$SETUP, TERM$OUT,
TERM$ANSWER, TERM$HANGUP, and TERM$CHECK procedures. However, if your
terminals are not used with modems, the TERl'1$ANSWER and TERl.'1$HANGUP
procedures can simply contain a RETURN. Also, if your application does
not need to perform special processing when all of the terminals on the
controller are detached, the TERM$FINISH procedure also can simply
contain a RETURN.

UNIT INFORMATION TABLE

A terminal's Uni t Informa tion Table provjldes informa tion abou t an
individual terminal. Although only one Device Information Table can
exist for each driver (controller), several Unit Information Tables can
exis t if differen t terminals have differem t charac teris tics (such as baud
rate, duplex, or parity, for example). ~lhen creating Unit Information
Tables, code them in the format shown here (as assembly-language
declarations). If you give the iRMX 86 lCU; the pathname of your Unit
Information Table field, the ICU include8 the file in the assemgly of
IDEVCF.A86 (a Basic I/O System configuration file).

Device Drivers 7-6

TERMINAL DRIVERS

TERMINAL$UNIT$INFORMATION
OW CONN$FLAGS
DW TERM$FLAGS
DW IN$RATE
DW OUT$RATE
DW SCROLL$NUf'1BER
OW FLOW$CONTROL*
OW HIGH$WATER$HAKK*
DW LOW$WATER$MARK*
OW FCONCHAR*
DW FCOFFCHAR*

*These elements apply only to buffered device drivers and are useful
only if you must specify them at configuration time.

where:

CONN$FLAGS WORD specifying the default connection flags for
thi.s terminal. Refer to the iRMX 86 BASIC I/O
SYSTEM REFEREl~CE MANUAL for more informa tion
about these flag:s. The flags are encoded as
follows. (Bit 0 is the low-order bit.)

Bits Value and Meaning

0-1 Line editing control.

0 = Invalid Entry.

1 = No line editing (transparent mode).

2 = Line editing (normal mode).

3 = No line editing (flush mode).

2 Echo control.

o = Echo.

1 = Do not echo.

3 Input parity control.

o Set parity bit to O.

1 = Do not alter parity bit.

4 Output parity control.

o = Set pa r i ty bit to o.

1 = Do not alter parity bit.

Device Drivers 7-7

TERM$FLAGS

TERMINAL DRIVERS

Bits Value and l1eaning

5 Output control character control.

o = Accept output control characters in the
input stream.

1 = Ignore output control characters in the
inpu t stream.

6-7 OSC control sequence control.

o = Act upon OSC sequences that appear in
either the input or output stream.

1 Act upon OSC sequences in the input
stream .only.

2 = Act upon OSC sequences in the output
stream only.

3 = Do no t .ac t upon any OSC sequences.

8-15 Reserved bits. For future compatibility,
set to O.

WORD specifying the terminal connection flags for
this terminal. R,efer to the iRMX 86 BASIC I/O
SYSTEM REFERENCE JiANUAL for more information
about these flags. The flags are encoded as
follows. (Bit 0 1s the low-order bit.)

Bits Value and Meaning

o Reserved bi t. Se t to 1.

1 Line protocol indicator.

o = Full duplex.

1 = Half duplex.

2 Output medium.

o Video d:tsp1ay terminal (VOT).

1 = Printed (Hard copy).

3 Modem indicator.

o = No t used wi th a modem.

1 = Used with a modem.

Device Drivers 7-8

TERMINAL DRIVERS

Bits Value and Meaning

4-5 Input pari ty con trol.

o = Always set parity bit to O.

1 = Never a.lter the parity bit.

2 = ~ven pa.r i ty is expec ted on inpu t. Se t
the parity bit to 0 unless the received
byte ha.s odd parity or there is some
other error, such as (a) the received
stop blt has a value of 0 (framing
error) or (b) the previous character
receiv€:d has not yet been fully
processed (overrun error.)

3 = Odd parity is expected in input. Set
the parity bit to 0 unless the received
byte has even parity or there is some
other error, such as (a) the received
stop bit has a value of 0 (framing
error) or (b) the previous character
received has not yet been fully
processed (overrun error.)

6-8 Ou tpu t pari. ty· con trol.

o = Always set parity bit to O.

1 = Always set parity bit to 1.

2 = Set pari ty bit to give the byte even
parity.,

3 = Set parity bit to give the byte odd
parity ..

4 = Do not alter the parity bit.

9 OSC Translation control.

o = Do not enable translation.

1 = Enable translation.

10 Terminal axes sequence control. This
specifies the order in which Cartesian-like
coordinates of elements on a terminal's
screen are to be listed or entered.

o = Lis t or en ter the horizon tal coordina te
first.

Device Drivers 7-9

IN$RATE

OUT$RATE

TERMINAL DRIVERS

Bi ts Value alnd Meaning

1 = Lis t or en ter the vertical coordina te
first.

11 Horizontal axis orientation control. This
specifies \\rhe ther the coordina tes on the
terminal's horizontal axis increase or
decrease as you move from left to right
across the screen.

o = Coordinates increase from left to right.

1 = Coordinates decrease from left to right.

12 Vertical axis orientation control. This
specifies w'he ther the coordina tes on the
terminal's vertical axis increase or

13-15

decrease as: you move from top to bottom
across the screen.

o = Coordinates increase from top to bottom.

1 = Coordil1la tes decrease from top to bo t tom.

Reserved btts. For future compatibility,
set to O.

NOTE

If bits 4-5 contain 2 or 3, and bits
6-8 also contain 2 or 3, then they must
both contain the same value. That is,
they must both reflect the same parity
convention (even or odld).

WORD indicating the input baud rate. The word is
encoded as follow's:

o = Invalidl.

1 = Perform an automatic baud rate search.

Other Actual input baud rate, such as 9600.

WORD indicating the output baud rate. The word
is encoded as follows:

o = Use the: inpu t baud ra te for ou tpu t.

Other Actual output baud rate, such as 9600.

Device Drivers, 7-10

SCROLL$ NUt1BER

TERMINAL DRIVERS

Most applications require the input and output
baud rates to be equal. In such cases, use
IN$RATE to set the baud rate and specify a zero
for OUT$RATE.

WORD specifying the number of lines that are to
be sen t to the tE~rminal each time the opera tor
enters the appropriate control character
(Control-W is th(~ default).

The Unit Information Table can contain additional data, depending on the
needs of the controller. Refer to the "Additional Information for
Buffered Devices" sec tion of this chapter for informa tion abou t 0 ther
fields you can add to the table.

TEKl.'1INAL SUPPORT CODE (TSC) DATA AREA

DUIBs, Device Information Tables, and Unit Information Tables are
structures that you set up at configuration time to provide information
about the initial state of your terminals. During configuration, the ICU
assembles these tables into the code se~nent of the Basic I/O System.
Therefore, they remain fixed throughout the life of the application
system.

However, the Basic I/O System also provides a structure in the data
segment (this section calls it the TSC Data Area) which changes to
reflect the current state of the terminal controller and its units.

The TSC Data Area consists of three portions:

• A 30H-byte controller portion which contains information that
applies to the device as a whole.

• A 400H-byte unit portion for each unit in the device. The
NUM$UNITS field in the Device Information Table specifies the
number of unit portions that the Basic I/O System creates.

• A user portion which the user-written driver routines can use in
any manner they choose. The DRIVER$DATA$SIZE field in the
Device Informa tion Table specifies the length of "this portion.
One of the fields in the controller portion (USER$DATA$PTR)
points to the beginning of this field.

Figure 7-2 illustrates the TSC Data Area graphically.

Device Drivers 7-11

TSC$DATA

UNIT$DATA$1

UNIT$DATA$N

USER$DATA

TERMINAL DRIVERS

USER$DATA:$PTR

Figure 7-2. TSC Data Area

i 30H by'"

! 400H b""

! 400H b" ..

1874

When the Basic I/O System calls one of your user-written driver
procedures, it passes, as a parameter, a pointer either to the start of
the TSC Data Area or to the start of one of the unit portions of the TSC
Data Area. Your driver routines can then obtain information from the TSC
Data Area or modify the information there.

The TSC Data Area always starts on a segm1ant boundary Its structure is
as follows:

Device Drivers 7-12

TERMINAL DRIVERS

DECLARE TSC$DATA STRUCTURE(
IOS$DATA$SEGMENT SELECTOR,

WORD, STATUS
INTERRUPT$TYPE
INTERRUPTING$UNIT
DEV$INFO$PTR
USER$DATA$PTR
RESERVED(.34)

BYTE,
BYTE,
POINTER,
POINTER,
BYTE,

DECLARE UNIT$DATA(*) STRUCTURE(
UNIT$INFO$PTR
TERMINAL$FLAGS

POINTER,
WORD,
WORD,
WORD,
\~ORD,

BYTE,
BYTE,
BYTE) ;

IN$RATE
OUT$RATE
SCROLL$NUMBER
RESERVED1(901)
BUFFERED$DEVICE$DATA(11)
RESERVED2(100)

where:

IOS$DATA$SEGMENT

STATUS

INTERRUPT$TYPE

INTERRUPTING$UNIT

SELECTOR con tainlng the base address of the I/O
Sys tem • s da ta segmen t. The I/O Sys tem • s terminal
support routine TSINITIO fills in this
information during initialization.

WORD in which thB user-written terminal
initialization procedure must return status
informa tion.

BYTE in which thH user-written terminal check
procedure must return the encoded interrupt
type. The possible values are:

o
1
2
3
4
5

None
Inpu t in terrup t
Output interrupt
Rlng in terrup t
Carrier interrupt
DE~lay in terrup t

If the terminal eheck procedure detects that
there are more interrupts to service, the
terminal check procedure adds the following value:

8 More interrupts

to the encoded interrupt type it returns.

For more information about these codes and their
values, see the description of the terminal check
procedure in the next section.

BYTE in which thE~ user-wri t ten terminal check
procedure must return the unit number of the
interrupting device. This value identifies the
uni t tha t is intE~rrupting.

Device Drivers 7-13

DEV$INFO$PTR

USER$DATA$PTR

UNIT$DATA

UNIT$INFO$PTR

TERMINAL$FLAGS

TERMINAL DRIVERS

POINTER to the Terminal Device Information Table
for thi s con troll,er. The I/O Sys tern's terminal
support routine TSINITIO fills in this data
during initialization.

POINTER to the beginning of the user portion of
the TSC Data Area. This user area can be used by
the driver, as needed. The I/O System's terminal
support routine TSINITIO fills in this pointer
value during initialization.

STRUCTUREs con tabling uni t por tions of the TSC
Data Area. There is one structure for each unit
(terminal) of the device. When a user attaches
the unit (via the A$PHYSICAL$ATTACH$DEVICE system
call or the ATTACHDEVICE Human Interface command,
for example), the I/O System's terminal support
routines initialize the appropriate UNIT$DATA
structure. They perform the initialization by
filling in all the fields of the UNIT$DATA
structure with information from the DUIB and the
Unit Information Table.

POINTER to the Unit Information Table for this
terminal. This is the same information as in the
UNIT$INFO$P field of the DUI8 for this
device-unit (terminal).

WORD specifying the connection flags for this
terminal. Refer to the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL for more information about these
flags. The flags are encoded as follows. (Bit 0
is the low-order bit.)

Bi. ts Value and l1eaning

o Reserved bit. Set to 1.

1 Line protocol indicator.

o = Full duplex.

1 = Half duplex.

2 Output medium.

o Video display terminal (VDT).

1 = Printed (Hard copy).

3 Modem indicator.

o Not used with a modem.

1 = Used with a modem.

Device Drivers 7-14

TERMINAL DRIVERS

Bits Value and Meaning

4-5 Input parity control.

6-8

o = Always set parity bit (bit 7) to o.

1 = Never alter the parity bit.

2 = Even parity is expected on input. Set
the parity bit to 0 unless the received
byte has odd pari ty or there is some
other error, such as (a) the received
stop bit has a value of 0 (framing
error) or (b) the previous character
received has not yet been fully
processed (overrun error.)

3 = Odd parity is expected in input. Set
the parity bit to 0 unless the received
byte has even parity or there is some
other error, such as (a) the received
stop bit has a value of 0 (framing
error) or (b) the previous character
received has not yet been fully
processed (overrun error.)

Ou tpu t pari ty con trol.

0 = Always set parity bit to O.

1 = Always set parity bit to 1.

2 = Set pari ty bit to give the byte even
parity.

3 = Set parity bit to give the byte odd
pari ty.

4 = Do not alter the pari ty bi t.

9 OSC Translation control.

o Do not enable translation.

1 = Enable translation.

10 Terminal axes sequence control. This
specifies the order in which Cartesian-like
coordinates of elements on a terminal's
screen are to be listed or entered.

o = List or enter the horizontal coordinate
first.

Device Drivers: 7-15

IN$RATE

OUT$RATE

TERMINAL DRIVERS

Bits Value and Meaning

1 = List or enter the vertical coordinate
first.

11 Horizontal axis orientation control. This
specifies ~rhether the coordina tes on the
terminal's horizontal axis increase or
decrease as you move from left to right
across the screen.

o Coordinates increase from left to right.

1 = Coordinates decrease from left to right.

12 Vertical axis orientation control. This
specifies ~rhether the coordina tes on the
terminal's vertical axis increase or

13-15

decrease as you move from top to bottom
across the screen.

o = Coordinates increase from top to bottom.

1 Coordinates decrease from top to bottom.

Reserved blts. For future compatibility,
set to O.

NOTE

If bits 4-5 contain 2 or 3, and bits
6-8 also contain 2 or 3, then they must
both contain the same value. That is,
they must both reflect the same parity
convention (even or odd).

WORD indicating the input baud rate. The word is
encoded as follow's:

o = Invalid.

1 = Perform an automatic baud rate search.

Other = Actual input baud rate, such as 9600.

WORD indicating the output baud rate. The word
is encoded as follows:

o = Use the input baud rate for output.

Other = Actual output baud rate, such as 9600.

Device Drivers. 7-16

SCROLL $ NU1'1BER

BUFFERED$DEVICE$­
DATA

TERMINAL DRIVERS

Most applications require the input and output
baud rates to be equal. In such cases, use
IN$RATE to set the baud rate and specify a zero
for OUT$RATE.

WORD specifying t.he number of lines that are to
be sent to the terminal each time the operator
enters the appropriate control character
(Control-W is the default).

BYTES that contai.n additional information that
applies to drivers of buffered devices
(intelligen t communica tions processors tha t
maintain their ow'n internal memory buffers).
Ref{~r to the "Addi tional Informa tion for Buffered
Devices" section to see how to access these bytes.

PROCEDURES THAT TERMINAL DRIVERS MUST SUPPLY

The routines that make up the Basic I/O System's Terminal Support Code
constitute the bulk of the terminal devic:e driver. These routines, in
turn, make calls to device-dependent routines that you must supply. The
following paragraphs describe the routines briefly. Sections that follow
describe the routines in more detail.

A terminal initialization procedure. This procedure must perform any
initialization functions necessary to get the terminal controller
ready to process I/O requests. TSINITIO calls this procedure.

A terminal finish procedure. This procedure must perform any final
processing so that the terminal controller can be detached.
TSFINISHIO calls this procedure.

A terminal setup procedure. This procedure sets up the terminal in
the proper mode (baud rate, parity, etc.). TSQUEUEIO and the
Terminal Support Code's interrupt ta8k call this procedure.

A terminal answer procedure. This procedure sets the Data Terminal
Ready (OTR) line for modem support. TSQUEUEIO and the Terminal
Support Code's interrupt task call this procedure.

A terminal hangup procedure. This procedure clears the Data Terminal
Ready (DTR) line for modem support. TSQUEUEIO and the Terminal
Support Code's interrupt task call this procedure.

A terminal check procedure. This procedure determines which terminal
sent an interrupt signal and what type of interrupt it is. The
Terminal Support Code's interrupt handler calls this procedure.

A terminal ou tpu t procedure. This pl~ocedure displays a charac ter at
a terminal. TSQUEUEIO and the Terminal Support Code's interrupt task
call this procedure.

Device Drivers 7-17

TERMINAL DRIVEttS

A set output waiting procedure. This procedure signals the Terminal
Support Code that a terminal is ready to perform character
transmission and interrupt handling.

When the Terminal Support Code calls these procedures, it passes, as a
parame ter, a poin ter to the TSC Da ta Area described in the previous
section. If the called procedure is to perform duties on behalf of all
of the terminals connected to the controller, the Terminal Support Code
passes a pointer to the beginning of the TSC Da ta Area (the device
portion). On the other hand, if the procedure is to perform duties for
just a particular terminal, the Terminal Support Code passes a pointer to
the unit portion of the TSC Data Area that corresponds to the terminal.

Because the TSC Data Area always starts on a paragraph boundary, a
procedure that receives a pointer to a unit portion of the data area can
construct a pointer to the beginning of the TSC Data Area. It does this
by calling the PL/M-86 builtin procedure BUILD$PTR using the base part of
the pointer it received and an offset of O. Also, if a procedure, such
as term$check, receives a pointer to the beginning of the TSC data area,
it can calculate where any unit portion of the data area starts by using
the following formula:

unit$data$p = base(of T::iC data area): [30H + (unit number ,,'r 400H)]

TERl1INAL INITIALIZATION PROCEDURE

This procedure must initialize the controller. The nature of this
initialization is device-dependent. When finished, the terminal
initialization procedure must fill in the STATUS field of the TSC Data
Area, as follows:

• If initialization is successful, it must set STATUS to E$OK (0).

• If initialization is not successful, it should normally set
STATUS equal to E$IO (2BH). However, it can set the STATUS field
to any other value, in which case the Basic I/O System returns
that value to the task that is attempting to attach the device.
(The Human Interface ATTACHDEVICE command expects the procedure
to return the E$IO status if initialization is unsuccessful.)

The syntax of a call to the user-written terminal initialization
procedure is as follows:

CALL term$init(tsc$data$ptr);

Device Drivers 7-18

where:

term$init

tsc$da ta$ptr

TERMINAL DRIVERS

NamE~ of the terminal ini tializa tion procedure.
You can use any name for this procedure, as long
as it doesn't conflict with other procedure names
and you include the name in the Device
Information Table.

POINTER to the beginning of the TSC Data Area.

TERMINAL FINISH PROCEDURE

The Terminal Support Code calls this procedure when a user detaches the
las t terminal uni t on the terminal con troller. The terminal finish
procedure can simply do a RETURN, it can clean up data structures for the
driver, or it can clear the controller. The syntax of a call to the
user-written terminal finish procedure is as follows:

CALL term$finish(tsc$data$ptr);

where:

term$finish

tsc$da ta$ptr

TERMINAL SETUP PROCEDURE

Name of the terminal finish procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.

POINTER to the beginning of the TSC Data Area.

This procedure "sets up" one terminal according to the TERMINAL$FLAGS,
IN$RATE, OUT$RATE, SCROLL$NUMBER, and BUFFERED$DEVICE$DATA fields in the
corresponding UNIT$DATA portion of the TSC Data Area. In particular, if
IN$RATE is 1, then the term$setup procedure must start a baud rate
search. (The terminal check procedure usually finishes the search and
then fills in IN$RATE with the actual baud rate.) If OUT$RATE is 0, the
terminal se tup procedure assumes the ou tpu t baud ra te is the same value
as the input baud rate.

If your terminal controller is a buffered device (an intelligent device
that manages its own internal data buffers), the terminal setup procedure
must also set one of the reserved fields of the UNIT$DATA structure.
Refer to the "Buffered Devices" section in this chapter for more
inf orma tion •

If your terminal driver supports a modem, the terminal setup procedure
might have to perform additIonal services. Refer to the "Terminal
Hangup" section for more information.

Device Drivers 7-19

TERMINAL DRIVERS

The terminal setup procedure must call the set output waiting procedure.
Refer to a later section in this chapter for more information on the set
output waiting procedure. The syntax of a call to the user-written
terminal setup procedure 1s as follows:

CALL term$setup(unit$datanptr);

where:

term$setup

uni t$da ta$n$p tr

Name of the terminal setup procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.

POINTER to the terminal's UNIT$DATA structure in
the TSC Data Area.

TERMINAL ANSWER PROCEDURE

This procedure activates the Data Termina.l Ready line for a particular
terminal. The Terminal Support Code calls the terminal answer procedure
only when both of the following condition.s are true:

• Bi t 3 of TERMINAL$FLAGS in the te.rminal' s UNIT$DATA s truc ture
(the modem indicator) is set to 1.

• The Terminal Support Code has rec.eived a Ring Indica te signal
(the phone is ringing) or an ans\tl'er reques t (via an OSC modem
answer sequence) for the terminal. Refer to the iRMX 86 BASIC
I/O SYSTEM REFERENCE MANUAL for more information about OSC
sequences.

The syntax of a call to the user-written terminal answer procedure is as
follows:

CALL term$answer(unit$datanp);

where:

term$answer

uni t$da ta$n$ p

Name of the terminal answer procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.

POINTER to the te:rminal' s UNIT$DATA s true ture in
the TS C Da ta Area.

Device Drivers 7-20

TERMINAL DRIVERS

TERMINAL HANGUP PROCEDURE

This procedure clears the Data Terminal Ready line for a particular
terminal. The Terminal Support Code calls the terminal hangup procedure
only when both of the following are true:

• Bi t 3 of TERMINAL$FLAGS in the te~rminal' s UNIT$DATA s truc ture
(the modem indicator) is set to 1..

• The Terminal Support Code has received a Carrier Loss signal (the
phone is hung up) or a hangup request (via an OSC modem hangup

sequence) for the t(~rminal. Refe~r to the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL for more information about OSC sequences.

The syntax of a call to the user-written terminal hangup procedure is as
follows:

CALL term$hangup(uni t$da tanp) ;

where:

term$ hangup

uni t$da ta$n$p

Name of the termi.nal hangup procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table"

PO INTER to the te!rminal's UNIT$DATA s truc ture in
the Terminal Support Code data Area.

NOTE:

Some modem devices rec:ognize only
carrier detect as an i.ndication that
someone :ls calling andl loss of carrier
detect as an indication of hangup.
However, mos t of these~ devices require
the Da ta Terminal Ready line to be
active bE~fore they can recognize
carrier de tect. For these devices, the
terminal setup procedure must activate
the Data Terminal Ready line.
Likewise:, the terminal hangup procedure
mus t clear the Da ta Te:rminal Ready line
and then reactivate it.

Device Drivers 7-21

TERMINAL DRIVERS

TERMINAL CHECK PROCEDURE

The Terminal Support Code calls this proeedure whenever an interrupt
occurs, which usually signals that a key on that terminal's keyboard has
been pressed. When called, the terminal check procedure should determine
the kind of interrupt and the interrupting unit, as follows:

1. Check all terminals on the devicE! for an inpu t charac ter.

2. If no input character is available, check for a transmitter ready
to send another character.

3. If no transmit character is available, check for a change in
status (such as a ring or carrier interrupt).

When the terminal check procedure finds the first valid interrupt, it
should quit scanning other units. Then it should place the unit number
of the interrupting unit in the INTEKRUPTING$UNIT field of the TSC Data
Area and information about the type of interrupt in the INTERRUPT$TYPE
field. The Terminal Support Code interprets values in the INTERRUPT$TYPE
field a~ follows:

o no interrupt
1 input interrupt
2 output interrrupt
3 ring interrupt
4 carrier interrupt
5 delay interrupt

Also, if the terminal check procedure detects another interrupt while it
is returning information about the first interrupt, it should add the
following value:

8 more interrupts

to the value it places in the INTERRUPT$TYPE field. Adding this value
signals the Terminal Support Code to call the terminal check procedure
again after it processes the current intE~rrupt.

Unless the controller hardware guarantee8 that an additional interrupt
will be set after one of multiple pending interrupts is serviced, the
terminal check procedure should always si,gnal tha t more in terrupts are
available unless it cannot detect interrupts at all. That is, it should
always return one of the following values: in the INTERRUPT$TYPE field:

OH no interrupt
9H input interrupt plus more
OAH output interrupt plus more
OBH ring interrupt plus more
OCH carrier interrupt plus more
ODH delay interrupt plus more

Device Drivers 7-22

TERMINAL DRIVERS

By returning these values, the terminal eheck procedure ensures that the
Terminal Support Code calls it again. Otherwise, the driver could lose
characters. If, in fact, there are no more interrupts to service, the
terminal check procedure can return a zero value (no interrupt) the last
time it is called.

If your terminal driver supports a baud rate search to determine the baud
rate of an individual terminal, the terminal check procedure must
ascertain the terminal's baud ra te, as follows:

1. The first time the terminal check procedure encounters an input
in terrup t for a particular terminal, it should examine the
IN$RATE field of tha t terminal's UNIT$DATA structure to determine
the baud rate.

2. If the IN$RATE field is set to 1 (perform automatic baud rate
search), the terminal check procedure should examine the input
character to determine if it is an uppercase "U". (It can
usually check for 19200, 9600, and 1 .. 800 baud in one attempt.)

3. If the terminal check procedure determines the baud rate, it
should set the IN$RATE field of the UNIT$DATA structure to
reflect the actual input baud rate.

4. If the terminal check procedure eannot determine the baud rate,
it should increment the IN$RATE field in the UNIT$DATA
structure. When the next input interrupt occurs, the terminal
check procedure can try again to determine the baud rate. Refer
to the example terminal driver in Appendix B to see how to
implement a baud rate scan.

5. Place a value of ODH in the INTERRUPT$TYPE field (delay interrupt
plus more)~ The ODH value tells the Terminal Support Code that a
baud rate scan is in progress. The Terminal Support Code then
waits a few clock cycles and calls the terminal setup procedure
to "set up" the terminal for the new baud rate.

If the terminal check procedure encounters an input interrupt, it must
also return the inpu t charac ter to the procedure tha t called it,
adjusting the parity bit according to bits 4 and 5 of the TERMINAL$FLAGS
field in the interrupting unit's UNIT$DATA structure. If the interrupt
is not an input interrupt, the terminal check procedure can return any
value.

The syntax of the call to the user-written terminal check procedure is as
follows:

input$char = term$check(tsc$data$ptr)

where:

inpu t$char BYTE in which the terminal check procedure
re turns the inpu t charac ter, if the in terrup twas
an input interrupt. If the interrupt was not an
input interrupt, this parameter can have any
value.

Device Drivers 7-23

term$check

tsc$da ta$ptr

TERMINAL DRIVERS

Name of the tenninal check procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.

POINTER to the start of the Terminal Support Code
Data Area.

TERMINAL OUTPUT PROCEDURE

The 'rerminal Support Code calls this procedure to display a character at
a terminal. The Terminal Support Code passes it the character and a
pointer to the terminal's UNIT$DATA structure. If bits 6 through 8 of
the TERMINAL$FLAGS field of the UNIT$DATA structure so indicate, the
terminal output procedure should adjust the character's parity bit and
then output the character to the terminal.

The syntax of the call to the user-written terminal output procedure is
as follows:

CALL term$ou t(uni t$da tan p, ou tpu t$c.harac ter) ;

where:

term$out

uni t$da ta$n$p

ou tpu t$charac ter

Name of the terminal output procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.

POINTER to the terminal's UNIT$DATA s truc ture in
the TSC Data Area.

BYTE containing a charac ter tha t the terminal
ou tpu t procedure should send to the terminal.

SET OUTPUT WAITING PROCEDURE

This procedure no tifys the Terminal Suppor t Code tha t the par ticular
terminal is ready to perform data transmission.

The syntax of a call to the set output wai ting procedure is as follows:

CALL xtssetoutput$waiting (unit$datanp);

Device Drivers 7-24

where:

xts$se t$outpu t
$waiting

uni t$da ta$n$ptr

TERMINAL DRIVERS

Name of the Termlnal Support Code provided
procedure. The terminal setup procedure
tha t you wri te mus t declare
xtssetoutput$waiting as an external procedure
with one pointer parameter.

POINTER to the tE~rminal' s UNIT$DATA s truc ture in
the TSC Data Area, This si the same pointer
passed to the terminal setup procedure by the
Terminal Support Code.

ADDITIONAL INFORMATION FOR BUFFERED DEVICES

If you are writing a driver for a bufferE~d communications device (an
intelligent communications processor likE~ the iSBC 544 board that manages
its own buffers of data separately from the ones managed by the Terminal
Support Code), your driver routines must make use of the
BUFFERED$DEVICE$DATA fields of the UNIT$DATA structure. In so doing,
they should impose the following structure on those 11 bytes:

DECLARE BUFFERED$DEVICE$DATA STRUCTURE(
BUFFERED$DEVICE BYTE,
FLOW$CONTROL WORD,
HIGH$WATER$MARK WORD,
LOW$ WATER$ MARK WORD,
FCONCHAR WORD,
FCOFFCHAR WORD);

where:

BUFFERED$DEVICE When true, a BYTE that specifies whether the unit
requires handling as a buffered device.

FLOW$CONTROL

HIGH$WATER$MARl<

WOR.D specifying 1whe ther the communica tions board
sends flow control characters (selected by the
FCONCHAR and FCOFFCHAR fields, but usually
XON and XOFF) to turn input on and off. The
low-order bit (bit 0) controls this option, as
follows:

o Disable flow control.

1 Enable flow control.

When flow control is enabled, the communication
board can control the amount of data sent to it
to prevent buffer overflow.

When the communication board's input buffer fills
to contain the number of bytes specified in this
WORD, the board sends the flow control character
to stop input.

Device Drivers 7-25

LOW$WATER$MARK

FCONCHAR

FCOFFCHAR

TERMINAL DRIVERS

When the number of bytes in the communication
board's input buffer drops to the number
specified in thiH WORD, the board sends the flow
control character to start input.

WORD specifying an ASCII character that the
communication board sends to the connecting
device when the number of bytes in its buffer
drops to the low-'wa ter mark. Normally this
character tells the connecting device to resume
sending data.

A WORD specifying an ASCII character that the
communication board sends to the connecting
device when the number of characters in its
buffer rises to the high-water mark. Normally
this character tells the connecting device to
stop sending data.

When a user a t tache s a uni t on any termin.al device, the Terminal Support
Code calls the terminal setup procedure. If the device is a buffered
device, the terminal setup procedure must. set the BUFFERED$DEVICE field
to TRUE (OFFH). It should also fill in the other fields of the
BUFFERED$DEVICE$DATA structure. In addition, it should enable the
communication device's on-board receiver interrupt (the one for the unit
being attached) so that it can accept data from the connected terminal.

When a user detaches a unlt on a buffered device, the Terminal Support
Code sets the BUFFERED$DEVICE field to FALSE (OH) and again calls the
terminal setup procedure. The terminal setup procedure should disable
the communication device's on-board receiver interrupt (the one for the
unit being detached) to prevent extraneous characters from being received.

To distinguish between an "attach device" and a "detach device", the
terminal setup procedure should establish its own internal flags (one for
each unit) in addition to the SUFFERED$DEVICE fields. It can use these
flags as follows:

1. Initially, the terminal initialization procedure sets the flag of
each unit to FALSE to indicate that no devices are attached.

2. When the Terminal Support Code calls the terminal setup procedure
to attach a unit, both the BUFFERED$DEVICE field and the internal
flag are FALSE. The terminal setup procedure recognizes from
this combina tion t.ha t the opera tion is an "a ttach device."

3. The terminal setup procedure performs the "attach device"
operations and sets the internal :flag and the BUFFERED$DEVICE
flag to TRUE to indicate that the device is attached.

4. When the unit is detached, the Terminal Support Code sets the
BUFFERED$DEVICE flag to FALSE and calls the terminal setup
procedure. In this si tuation, thc~ BUFFERED$DEVICE field is
FALSE, but the internal flag is TRUE. The terminal setup
procedure recognizes from this combination that the operation is
a "de tach device."

Device Drivers 7-26

TERMINAL DRIVERS

PROCEDURES' USE OF DATA STRUCTURES

Table 7-1 helps you sort out the responsj.bili ties of the various
procedures in a terminal device driver. In the table, the following
codes refer to those procedures:

(1) terminal ini tializa tion
(2) terminal finish
(3) terminal setup
(4) terminal answer
(5) terminal hangup
(6) terminal check
(7) terminal output

Also, "System" and "ICU" are used in Table 7-1 to indicate the iRMX 86
software and the iRMX 86 Interactive Configuration Utility,
respectively. In addition, "Term$flags" is an abbreviation of
"Terminal$flags," and numbers following :lmmediately after "Term$flags"
are bit numbers in that word.

Device Drivers 7-27

TERMINAL DRIVERS

Table 7-1. Uses of Fields in Terminal Driver Data Structures

Filled in/Changed by Can or Will be Used by
TSC$DATA

IOS$DATA$SEGMENT System (1)-(7)
STATUS (1) System
INTERRUPT$TYPE (6) System
INTERRUPTING$UNIT (6) System

I
DEV$INFO$PTR System (1)-(7)
USER$DATA$PTR System (1)-(7)
UNIT$DATA

UNIT$INFO$PTR System System
TERM$FLAGS (0-2) System System
TERi1$FLAGS (3) System (3)
TERM$FLAGS (4-5) System (3),(6)
TERM$FLAGS (6-8) System (3),(6),(7)

IN$RATE Sys tern, (3) , (6) (3)
OUT$RATE System (3)
SCROLL$NU11BER System System

I BUFFERED$DEVICE$DATA (3) System, (3)
TERMINAL$DEVICE$INFORMATION

NUM$UNITS lCU System
DRlVER$DATA$SlZE ICU System
STACK$SlZE lCU System
TERM$lNlT lCU System
TERM$FlNlSH lCU System
TERl1$SETUP lCU System
TERM$OUT rcu System
TERM$ANSWER lCU System
TERM$HANGUP lCU System
TERM$CHECK lCU System
INTERRUPTS

INTErl.RUPT$LEVEL lCU System
TERM$CHECK lCU System

DRlVER$INFO lCU (1)-(7)

Device Drivers 7-28

CHAPTER 8
BINDING A DEVICE DRIVER

TO THE 1/0 SYSTEM

You can write the modules for your deviee driver in either PL/M-86 or the
ASM86 Macro Assembly Language. However, you must adhere to the following
gu idel ines:

• If you use PL/M-86, you must define your routines as reentrant,
public procedures, and compile them using the ROM and COMPACT
con troIs.

• If you use assembly language, your routines must follow the
conditions and conventions used by the PL/M-86 COMPACT size
control. In particular, your routines must function in the same
manner as reentrant PL/M-86 proeedures with the ROM and COMPACT
controls set. The ASM86 MACRO ASSEMBLER OPERATING INSTRUCTIONS
manual describes these conditions and conventions.

USING THE iRMXTH 86 INTERACTIVE CONFIGURATION UTILITY

To use the iRMX 86 Interactive Configuration Utility to configure a
driver that you have written for your application system, you must
perform the following steps:

1. For each device driver tha t you have wri tten, assemble or
compile the code for the driver.

2. Put all the resulting object modules in a single library, such
as DRIVER.LIB.

3. Ascertain the device numhers and device-uni t numbers to use in
the DUIBs for your devices.

a. Use the ICU to configure a system containing all the
Intel-supplied drivers you require.

b. Use the G option to gener.:lte that system.

c. Use a text editor to examine the file IDEVCF.A86. Among
other things, this file contains DUIBs for all the
device-units you defined in your configuration.

d. Look for the DEFINE DUIB structures in the file. Chapter 2
lists the format of-these structures. Note the device
number (eighth field) and the device-unit number (tenth
field) of the las t DUIB dlefined in the file.

Figure 8-1 lists part of an IDEVCF.86 file which contains
this information (the file you examine might look
different, depending on how you configure your system).
The arrows in the figure pain t to the relevan t fields.

Device Drivers 8-1

----)

----)

BINDING A DEVICE DRIVER TO THE I/O SYSTEI1

e. Use the next available device numbers and device-unit
numbers in your DUIBs.

DEFINEDUIB
& 'lp' ,
& 00001H,
& OF2H,
& 00,
& 00,
& 00,
& 00,
& 00004H,
& 00,
& OOOOBH,
& INITIO,
& FINISHIO,
& QUEUEIO,
& CANCELIO,
& DINF004,
& 00,
& OFFFFH,
& OOOOOH,
& 130,
& FALSE,
& OOOOOH,
& 0
&)

<

NUI1DUIB EQU (THIS BYTE - DUIBTABLE) / SIZE OEFINEDUIB
BIOSCODE ENDS
%DEVICETABLES(NUMDUIB,0000CH,005H,003E8H)
CODE SEGMENT
ASSUME CS:CGROUP

Figure 8-1. Example IDEVCF.A86 File

Device Drivers. 8-2

BINDING A DEVICE DRIVER TO THE I/O SYSTEM

4. Crea te the fo llowing:

a. A file containing the DUIBs for all the device-units you
are adding. Use the DEFINE DUIB structures shown in
Chapter 2. Place all the s"tructures in the same file.
Later, the ICU includes this file in the assembly of the
IDEVCF.A86 file.

b. A file containing all the device information tables you are
adding. Use the RADEV DEV INFO structures shown in Chapter
2 for any random access drIvers you add. Later, the ICU
includes this file in the assembly of the IDEVCF.A86 file.

c. If applicable, any unit information table(s}. Use the
RADEV UNIT INFO structures shown in Chapter 2 for any
random access drivers you add. Add these tables to the
file created in step b.

d. External declarations for any procedures that you write.
The names of these procedures appear in either the DUIB or
the Device Information Table associated with this device
driver. Add these declarations to the file created in step
b.

5. Use the ICU to configure your final system. When doing so:

a. Answer "yes" when asked if you have any device drivers not
supported by the ICU (this means drivers that you have
wri tten).

b. As input to the "User Devic.es" screen, enter the pathname
of your device driver library. This refers to the library
built in step 2; for example, :Fl:DRIVER.LIB.

c. Also, enter the information. the ICU needs to include your
configuration data in the a.ssembly of IDEVCF.A86. The
informa tion nE~eded includes the following:

• DUIB source code pathn.ame (the file created in step
4a) •

• Device and Uni t source code pa thname (the file crea ted
in steps 4b through 4d).

• Number of user defined devices.

• Number of user defined device-units.

The ICU does the rest.

Figure 8-2 contains an example of the "User Devices" screen. The
underlined text represents user input to the ICU. In this example, the
file :Fl:DRIVER.LIB contains the object code for the driver, :Fl:DUIB.SRC
contains the source code for the DUIBs, a.nd :Fl:DEVINF.SRC contains the
source code for the Device and Unit Information Tables along with the
necessary external procedur.~ declara tions.

Device Drivers 8-3

BINDING A DEVICE DRIVER TO THE I/O SYSTEM

The code in the DRIVER.LIB file supportB one device with two units.
Refer to the iRMX 86 CONFIGURATION GUIDE for ins truc tions on hO\-J to use
the ICU.

User Devices
(OPN) Object Code Path Name [1-45 characters]

NONE
(DPN) Duib Source Code Path Name [1·-45 characters]

(DUP) Device and Uni t Source Code Pa th Name [1-45 charac ters]

(NO) Number of User Defined Devices [O-OFFH]
(NDU) Number of User Defined Device'-Uni ts [O-OFFH]

0001H
0001H

Enter Changes [Abbreviations ?/= ne\l[_va1ue] : OPN = :Fl:DRIVER.LIB
DPN = :Fl:DUIB.SRC
DUP = :Fl:0EVINF.SRC
ND = 1
NOU = 2

Figure 8-2. Example User Devices Screen

USING THE iRMXm 88 INTERACTIVE CONFIGUru~TION UTILITY

To use the iRMX 88 Interactive Configuration Utility to configure a
dr i ver tha t you have wr it ten for your app1 ica tion sy stem, you mus t
perform the following steps in the following order:

1. For each driver, assemble or compile the code.

2. When using the ICU:

a. AnstlTer "208", "215", "common", "random", or "custom" when
asked for device type.

b. When promp ted, en ter the -Lnforma tion for the OUIBs, the
device informa tion tables:, and, if appl icab1e, the uni t
information table.

c. When prompted for linking information, enter the names of
the appropriate modules.

The ICU does the rest.

Device Drivers 8-4

APPENDIX A
RANDOM ACCESS DRIVER

SUPPORT ROUTINES

This appendix describes, in general terms, the operations of the random
access device driver support routines. The routines described include:

INIT$IO
FINISH$IO
QUEUE$IO
CANCEL$IO
INTERRUPT$TASK

NOTE

For iRMX 88 systems, these names are
prefixed by "RAD$".

These routines are supplied with the I/O System and are the device driver
routines actually called when an application task makes an I/O request to
support a random access or common device.. These routines ultimately call
the user-written device initialize, device finish, device start, device
stop, and device interrupt procedures.

This appendix provides descriptions of these routines to show you the
steps that an actual device driver follo~is. You can use this appendix to
get a better understanding of the I/O System-supplied portion of a device
driver to make writing the device-dependent portion easier (the random
access driver support routines follow essentially the same pattern). Or
you can use it as a guideline for writing custom device drivers.

INIT$IO PROCEDURE

The iRMX 86 I/O System calls INIT$IO when an application task makes an
RQAPHYSICAL$ATTACH$DEVICE system call BLnd there are no units of the
device currently attached. The iRMX 88 I/O System calls INIT$IO when an
application task attaches or creates a fi.le on the device and no other
files on the device are attached.

INIT$IO initializes objects used by the remainder of the driver routines,
crea tes an interrupt task, and calls a user-supplied procedure to
initialize the device itself.

Device Drivers A-I

I

I

I

RANDOM ACCESS DRIVER SUPPORT ROUTINES

When the I/O System calls INIT$IO, it passes the following parameters:

• A pointer to the DUIB of the device-unit to initialize

• In the iRMX 86 environmen t, a poin ter to the loca tion where
INIT$IO must return a token for a data segment (data storage
area) that it creates

• A pointer to the location where INIT$IO must return the condition
code

The following paragraphs show the general steps that the INIT$IO
procedure goes through in order to initialize the device. Figure A-I
illustrates these steps. The numbers in the figure correspond to the
step numbers in the text.

INIT$10

CREATES DATA OEIJECT FOR
DEVICE AND STARTi3 FILLING IT

,

CREATES THE REUION FOR
ACCESS TO THE QUEUE

CREATES THE INTEI~RUPT TASK

CALLS USER·SUPPLIEI) PROCEDURE
TO INITIALIZE CIEVICE

RETURNS TO 1/0 SYSTEM
PASSING DATA OBJECT AND

CONDITION CODE

1873

Figure A-I. Random Access Device Drtver Initialize I/O Procedure

Device Drivers A-2

RANDOM ACCESS DRIVER SUPPORT ROUTINES

1. It creates a data storage area that will be used by all of the
procedures in the device driver. The size of this area depends
in part on the number of units in the device and any special
space requirements of the device. INIT$IO then begins
initializing this area and eventually places the following
information there:

• The value of thf~ DS (data segment) register.

• A token (identifier) for a region (exchange) --- for mutual
exclusion.

• An array which \llill contain the addresses of the DUIBs for
the device-units attached to this device. INIT$IO places the
address of the DUIB for the first attaching device unit to
this array.

• A token (identifier) for the interrupt task.

• Other values indicating that the queue is empty and the
driver is not busy.

It also reserves space in the data storage area for device data.

2. It creates a regiono The other procedures of the device driver
receive control of this region whenever they place a request on
the queue or remove a request from the queue. INIT$IO places the
token for this region in the data storage area.

3. It creates an interrupt task to handle interrupts generated by
this device. INIT$IO passes to the interrupt task a token for
the data storage area. This area is where the interrupt task
will get information about the device. Also, INIT$IO places a
token for the interrupt task in the data storage area.

4. I t calls a user-wri t ten device ini tializa tion procedure tha t
initializes the device itself. It gets the address of this
procedure by examining the Device Information Table specified in
the DUIB. Refer to Chapter 3 for information on how to write
this initialization procedure.

5. It returns control to the I/O System, passing a token for the
data storage area and a condition code which indicates the
success of the initialize operation.

FINISH$IO PROCEDURE

The iRMX 86 I/O System calls FINISH$IO when an application task makes an
RQAPHYSICAL$DETACH$DEVICE system call and there are no other units of
the device currently attached. The iRMX 88 I/O System calls FINISH$IO
when an application detaches or deletes a file and no other files on the
device are attached.

Device Drivers: A-3

I

RANDOM ACCESS DRIVER SUPPORT ROUTINES

FINIStl$IO deletes the objects used by the: other device driver routines,
deletes the interrupt task, and calls a user-supplied procedure to
perform final processing on the device itself.

When the I/O System calls FINISH$IO, it passes the following parameters:

• A pointer to the DUIB of the devi.ce-uni t just detached

• A selector to the data storage area created by INIT$IO

The following paragraphs show the general steps that the FINISH$IO
procedure goes through to termina te proce.ssing for a device. Figure A-2
il1ustra tes these steps. The numbers in the figure correspond to the step
numbers in the text.

1. It calls a user-written device f1.nish procedure that performs any
necessary final processing on the! device itself. FINISH$IO gets
the address of this procedure by examining the Device Information
Table specified in the DUIB. Refer to the Chapter 4 for
information about device information tables.

FINIStI$O

CALLS USER-SUPPLIED
PROCEDURE Tel FINISH UP

PROCESSING ON THE DEVICE

,.

(~ DELETES INTERRUPT TASK FOR
DEVICE AND RESETS INTERRUPT

DELETES REGION ANO DATA OBJECTS
USED BY THIS DEVICE DRIVER

(~
RETURNS TO THE 1/0 SYSTEM

1876

Figure A-2. Random Access Device J)river Finish I/O Procedure

Device Drivers A-4

RANDOM ACCESS DRIVER SUPPORT ROUTINES

2. It deletes the interrupt task originally created for the device
by the INIT$IO procedure and caneels the assignment of the
interrupt handler to the specified interrupt level.

3. It deletes the region and the data storage area originally
created by the INIT$IO procedure, allowing the operating system
to realloca te the mc~mory used by these objec ts.

4. It returns control to the I/O System.

QUEUE$IO PROCEDURE

The I/O System calls the QUEUE$IO procedure to place an I/O request on a
queue of reques ts. Thi s qUE~ue has the s truc ture of the doubly-linked
list shown in Figure 2-2. If the device itself is not busy, QUEUE$IO
also starts the request.

When the I/O System calls QUEUE$IO, it passes the following parameters

• A token (identifier) for the IORS

• A pointer to the DUlB

• A token (identifier) for the data storage area originally created
by INIT$IO

The following paragraphs show the general steps that the QUEUE$IO
procedure goes through to place a request on the I/O queue. Figure A-3
illustrates these steps. The numbers in the figure correspond to the
step numbers in the text.

1. It se ts the DONE f iE~ld in the IORS to OH, indica ting tha t the
request has not yet been completely processed. Other procedures
that start the I/O transfers and handle interrupt processing also
examine and set this field.

2. It receives control of the region and thus access to the queue.
This allows QUEUE$IO to adj us t the queue wi thou t conce rn tha t
other tasks might also be doing this at the same time.

3. It places the IORS on the queue.

4. It calls an I/O System-supplied procedure to start the processing
of the request at the head of the queue. This results in a call
to a user-wr i tten device star t procedure which ac tually sends the
data to the device itself. This start procedure is described in
Chapter 5. If the device is already busy processing some other
request, this step does not start the data transfer.

5. It surrenders control of the region, thus allowing other routines
to have access to the queue.

Device Drivers A-5

I

RANDOM ACCESS DRIVER SUPPORT ROUTINES

CANCEL$IO PROCEDURE

The I/O System calls CANCEL$IO to remove one or more requests from the
queue and possibly to stop the processing of a request, if it has already
been started. The iRMX 86 I/O System calls this procedure in one of two
instances:

• If an iRMX 86 user makes an RQ$A~;PHYSICAL$DETACH$DEVICE system
call and specifies the hard detach option (refer to the iRMX 86
BASIC I/O SYSTEM REFERENCE MANUAL for information about this
system call). The hard detach re,moves all requests from the
queue.

QUEUE$10

SETSSTATU'~
IN THE I(IRS

(0 GAINSAC(~
FROM THE REGION

,If

PLACESTHI~
ON THE QUEUE

C~

STARTS THE PROCESSIN41 OF THE REQUEST,
IF THE DEVICE ISNOT BUSY

if

SURRENDERS'~
TO THE REOION

~)

RETURNS TO THE 1/0 SYSTEM

1878

Figure A-3. Random Access Device Driver Queue I/O Procedure

Device Driver:; A-6

RANDOM ACCESS DRIVER SUPPORT ROUTINES

• If the job containing the task tha t makes an I/O request is
deleted. In this case, the I/O System calls CANCEL$IO to remove
all of that task's requests from the queue.

When the I/O System calls CANCEL$IO, it passes the following parameters:

• An 10 value that identifies reqUt9sts to be cancelled

• A pointer to the DUIB

• A token (iden tifier) for the dev:ice da ta storage area

The following paragraphs show the general steps that the CANCEL$IO
procedure goes through to cancel an I/O request. Figure A-4 illustrates
these steps. The numbers in the figure correspond to the step numbers in
the text.

1. It receives access to the queue by gaining control of the
region. This allows it to remOVE~ reques ts from the queue wi thou t
concern tha t 0 ther tasks might also be processing the IORS a t the
same time.

2. It locates a request that is to be cancelled by looking at the
cancel$id field of the queued IORSs, starting at the front of the
queue.

3. If the request that is to be cancelled is at the head of the
queue, that is, the device is processing the request, CANCEL$IO
calls a user-written device stop procedure that stops the device
from further processing. Refer to the Chapter 5 for information
on how to write this device stop procedure.

4. If the request is finished, or if the IORS is not at the head of
the queue, CANCEL$IO removes the IORS from the queue and sends it
to the response mailbox (exchangE~) indicated in the IORS.

s. It surrenders con trol of the regJlon, thus allowing 0 ther
procedures to gain access to the queue.

NOTE

The additional CLOSE request supplied
by the I/O System will not be processed
until all other requests with the given
cancel$id value have been deal t wi the

Device Drivers A-7

I

RANDOM ACCESS DRIVER SUPPORT ROUTINES

CANCEL$IO

GAINS ACCESS
FROM THE REGION

OBTAINIORS ®[WITH SPECIFIED
CANCEL$10 VALUE

NO

REMOVES THE 10RS
FROM THE QUEUE

SENDS THE 10RS
TO THE RESPONSE

MAILBOX

@[:URRENDERSACCESS
TO THE REGION

---,-------'

[

RETURNS TO THE
1/0 SYSTEM

®

YES

YES

CALLS THE USER-WRITTEN
DEVICE STOP PROCEDURE

NO

1872

Figure A-4. Random Access Device Driver Cancel I/O Procedure

Device Driver8 A-8

RANDOM ACCESS DRIVER SUPPORT ROUTINES

INTERRUPT TASK (INTERRUPT$TASK)

As a part of its processing" the INIT$IO procedure creates an interrupt
task for the entire device. This interrupt task responds to all
interrupts generated by the units of the device, processes those
interrupts, and starts the device working on the next I/O request on the
queue.

The following paragraphs sh()w the general steps that the interrupt task
for the random access device driver goes through to process a device
interrupt. Figure A-S illustrates these steps. The numbers in Figure
A-S correspond to the step numbers in the text.

1. It uses the contents of the proce:ssor's DS register to obtain a
token (identifier) for the device data storage area. This is
possible because of the following two reasons:

• When INIT$IO crea ted the inte:rrupt task, instead of
specifying the correct contents of the DS register, it passed
the token of the da ta s torag€~ area as the con ten ts of the
task's DS register.

• When the INIT$ 10 procedure crea ted the da ta storage area, it
included the correct contents of the DS register in one of
the fields.

When the interrupt task starts running, it saves the contents of
the DS register (to use as the address of the data storage area)
and sets the DS register to the value listed in the field of the
data storage area. Thus the task has the correct value in its OS
register, and it has the address of the data storage area. This
is the mechanism that is used to pass the address of the device's
da ta storage area from the INIT$][O procedure to the in terrup t
task.

2. For iRMX 86 systems, it makes an RQSETINTERRUPT system call to
indicate that it is an interrupt task associated with the
interrupt handler supplied with the random access device driver.
It also indicates the interrupt level to which it will respond.

For iWiX 88 systems, it makes an RQ$ELVL system call to enable
the nucleus-provided default intE~rrupt handler.

3. It begins an infinite loop by wa:lting for an interrupt of the
specified level.

4. Via a region, it gains access to the request queue. This allows
it to examine the first entry in the request queue without
concern tha t 0 ther tasks are modIfying ita t the same time.

5. It calls a user-written device-interrupt procedure to process the
ac tual in terrupt. This can involve verifying tha t the in terrupt
was legi tima te or any 0 ther opera tion tha t the device requires.
This interrupt procedure is described further in Chapter 3.

Device Drivers A-9

I

I

RANDOM ACCESS DRIVER SUPPORT ROUTINES

INTERRUPT$TASK

<D
ADJUSTS DS REGISTER TO OBTAIN

THE DATA OJECTOR FOR THE DEVICE

®
SETS INTERRUPT LEVEL AT WHICH TO

RESPOND AND INDICATES DEVICE
HANDLER

---1
®

WAITS FOR INTERRUPT AT THE
SPECIFIED LEVEL

@)
GAINS ACCESS FROM REGION

CALLS THE USER-WRITTEN INTERRUPT
@

PROCEDURE TO PROCESS
THE INTERRUPT

IS
YES THE REQUEST

COMPLETELY FINISHED ,
? ®

REMOVES THE IORS FROM THE
QUEUE AND SENDS A MESSAGE TO

THE RESPONSE MAIL BOX

NO I J

i'
0

STARTS THE REQUEST AT THE
HEAD OF THE QUEUE

®
SURRENDERS ACCESS TO THE REGION

1875

I Figure A-5. Random Access Devic4~ Driver Interrupt Task

Device Drivers A-IO

RANDOM ACCESS DRIVER SUPPORT ROUTINES

6. If the request has been completely processed, (one request can
require multiple reads or writes, for example), the interrupt
task removes the IORS from the queue and sends it as a message to
the response mailbox (exchange) i.ndicated in the IORS. If the
request is not completely processed, the interrupt task leaves
the IORS at the head of the queue.

7. If there are requests on the queue, the interrupt task initiates
the processing of the next I/O request by calling the
user-written device·-start procedure.

8. In any case, the interrupt task then surrenders access to the
queue, allowing other routines to modify the queue, and loops
back to wait for another interrupt.

Device Driver:; A-II

I

APPENDIX B
EXAMPLES OF

DEVICE DRIVERS

This appendix contains four examples of device drivers. The first
example is a common driver which dri v.~s a line printer. The second is a
random access driver, which drives a :1SBC 206 disk controller. The third
example is an 8274 terminal driver. (The contents of the INCLUDE files
that these drivers use are listed in the last section of this appendix.)

Note that the names of the procedures in the examples are not
device$start, device$interrupt, etc., as in the text of this manual.
This is because the actual names are placed in the appropriate DUIBs
during configuration.

Table B-1 lists the device driver example file names and the pages on
which they appear.

Tablc~ B-1. Device Driver Examples

File Description Page

iprntr.p86 Driver for a line printer B-2

i206ds.p86 Driver for an iSBC 206 disk controller B-6

x8274.p86 8274 teI'minal driver B-20

INCLUDE files for above device drivers B-39

B-1

EXAMPLES OF DEVICE DRIVERS

Pl/H-86 COHPILER xprntr.p86

iRMX 86 Pl/H-86 V2.3 COMPILATION OF MODULE XPRNTR
OBJECT MODULE PLACED IN :Fl:XPRNTR.OBJ
COMPILER INVOKED BY: :lAN6:plIB6 :Fl:XPRNTR.P86 COI1PACT OPTIMIZE(3) ROM PA6EWIDTH(132) NO TYPE

$title ('xprntr.p86')
If

f xprntr.p86
f
t
f
f

Th~s module ~Iple~ents centr~nix-ty~e in~erfac~ line pri~ter
dnver. It 15 wntten as a 'CCllLlon devlce dnver. It IS
assumed that the reader is familiar with the 8255 chip.

*
f
f LANGUAGE DEPENDENCIES:
f COMPACT ROM OPTIHIZE(3l
f:!

1*
f INTEL CORPORATION PROPRIETARY INFORMATION
f
f

* of.
f

f
fl

This software is supplied under the ter!s of a
license agreelent or nondisclosure agreelent Mith
Intel Corporation and lay not be copIed or disclosed
except in accordance Mith the terls of that agreelent.

xprntr: DO'
Sinclude(:ll:xcomon.lit)

= $save nolist
$include(:fl:xparal.lit)

= $save nolist
$include(:fl:xnutyp.lit)

= $save nolist
$include(:fl:xiors.lit)

= $save nolist
$include(:fl:xduib.lit)

= $save nolist
$include(:fl:xprntr.litl

= $save nolist
$include(:fl:x8255.1it)

= :fsave nolist
$include(:fl:xprerr.lit)

= $save nolist
$include(:fO:nsleep.ext)

= $SAVE NOlIST
1*

f literal declaration
f/

23 DECLARE
TAB$CHAR LITERAllY '09H',
SPACE LITERALLY '20H'j

$subtitle('printer$start$interrupt')

1* * printerfstart/printer$interrupt
f start/interrupt procedure for the line printer

* CALLING SEQUENCE: * CALL printer$startfinterrupt (iors$p, duibfp, ddatafp);
f

B-2

24

25 2

26 2

27 2

28 2

29 2

30 2
31 2

32 3
77
",'oJ

7
.j

34 ..,
.J

3S
.,
t.

36 3
37 4
38 4
39 4

40 3

41 4

42 4

43 4

44 5

45 6
46 6

EXAMPLES OF DEVICE DRIVERS

f INTERFACE VARIABLES:
f iarsSp 1/0 request/result segment pOinter
* duib$p - painter to the device-unit lnfa. black
f ddatafp pointer tel the device(printer} data segflent.
*
f CALLS: I~one

*
1/

printerfstartfinterrupt: PROCEDURE (iars$p, dUibSp, ddata$Q)
PUBLIC REENTRANT;

DECLARE
(iorsfp, duibfp, ddataSpl POINTER;

DECLARE
iors BASED iars$p IOfREQSRESfSES
duib BASED duib$p DEV$UNIT$INFO$~LOCK;

DECLARE
dinfoSp POINTER
dinfo BASED ~info$p PRINTERSDEVICEfINFO;

DECLARE
bufferSp POINTER,

(char BASED buffer$p) (I) BYTE;

dinfoSp = dUib.device$infoSp;

/f
* test far spurious interrupts
*/

IF iorsfp = 0 THEN
DO;

/f
* turn off the interrupt and return
1/

QUTPUT(dinfo.Control$port) = INT$DISABLE;
RETURN;

END;

DO CASE (iors.funct)j

If read f/
DO;

. iors.status = E$IDDR;
iors.done = TRUE;

END;

If write I!
DO;

/f get the buffer pointer */
buffer$p = iors.buff$p;

/f disable printer interrupt *1
QUTPUT(dinfo.Control$port) = INT$DISABLEj

DO WHILE (iors.actual < iors.count);

1*
f test far printer ready and nat paper out. if not ready
* or paper out then ~ait forever.
1/

DO WHILE (((INPUT(dinfo.CSport) AND PRINTERfREADYl = 0) OR
((INPUT(dinfo.C$port) AND PAPER$OUT) <> 0));

/f sleep for 100 nucleus clock intervals 1/
CALL rq$sleep(100, @iars.status)j

END;

B-3

47

48

49

50
51

53

54

55
56
57
58

59
60
'I o.

62
63
64
65

66
67
68
69

70

71
72
73
74

5

5

5

5
5

5

5

5

6
6
6
5

4
4
4

.,.
J

4
4
4

.,.
oJ

4
4
4

3

4
4
4
4

EXAMPLES OF DEVICE DRIVERS

If
f convert TAB character to a SPACE character if the
f printer does not handle thel
f/

IF «char(iors.actual) = TAB$CHAR) AND
«dinfo.tab$control) = FALSE))

THEN char(iors.actual) = SPACE;
/*

f 1'5 complement tlte character and send it to the * printer. Port-A is the data port
1/

DUTPUT(dinfo.Afport} = NOT(char(iors.actual));
II

f strobe the line printer
I this is a way of telling the printer that there is
I valid data on th~ bus
II

OUTPUT(dinfo.Contral'portJ = STROBE.DN'
DUTPUT(dinfo.Control$part) = STRDBE$OF~;
If

f increment the count of chars printed
II

1ors.actual = jars.actual + 1;
If

f test whether printer acknowledgement bit is set
II

IF (INPUT(dinfo.C$port) AND CHARSACK AND CHARSACK$COMPLETE) = 0
THEN

DO;
l*
• printer didn't acknowledge. Hopefully it has
I started printing. So enable the printer interrupt
• and return(printer will interrupt when it's done)
1/

OUTPUT(dinfo.Cantrol'port) = INT$ENABLE;
RETURN;

END;
END; If: end af DO WHIl.E statement fl

ill:
I set iors.done to TRUE
*' set iors.status to OK
*1

jors.status = E$OKj
jars. done = TRUE;

END;

1* seek Ii
DO;

lors.status = E$!DDRj
jors.done = TRUEj

END;

!f special il
DO;

iors.status = E$IDDR;
iors.done = TRUE;

END;

if attach device f/
DO;

1* initialize the 8255 f!
OUTPUT(dinfo.Control$port) = MOOHWORD;
iors.status = ESOKj
lors.done = TRUE;

END;

B-4

75
76
77
78

79
80
81
82

83
84
85
86

87

88

"'0 tj,

90

91

93

94
95
96

97

qa

.,

.J

4
4
4

3
4
4
4

.,
oJ

4
4
4

3

2

"' ;.

2

2

2

"' i..

2
2

2

EXAMPLES OF DEVICE DRIVERS

/f detach device f/
DO;

jars. status = ESOK;
iors.done = TRUE;

END;

/1 open */
DO;

iors.statu5 = ESOKj
iors.done = TRUE;

END;

If: close */
DO;

iors.status = EfOK;
iors.done = TRUE;

END;

END; If: end of DO CASE statement 1/

END printer$startSinterruptj

if
* printer$stop

stop procedure for the line printer f
I

* CALLING SEQUENCE:
CALL printer$stop (iorsSp, duib$p, ddata$plj ..

t INTERFACE VARIABLES:
f iors$p IiO request/result seglent pointer
f duibSp - pointer to the device-unit info. black
.. ddatafp pointer to the device(printer) data segment.
*' f CALLS: None
f:
f!

printer$stop: PROCEDURE (iors$p, duibSp, ddataSpl PUBLIC REENTRANT;
DECLARE

(iors$p, duioSp, ddataSp) POINTER;
DECLARE

iors
duib

DECLARE

BASED iors$p IOSREQIRESSSEG
BASED duib$p DEVSUNITSINFOS'LOCK;

dinfoSp POINTER,
dinfo BASED dinfo$p PR!NTER$DEvICESINFOj

If
f turn off the printer interrupt
f set iors.done to TRUE
.. set iors.statu5 to EIDK
*/

dinfoSp = duib.deviceSinfo$p;

QUTPUT(dinfo.Control$portl = INT$DISABLEj
iors.status = ESOK;
iors.done = TRUE; "

END printer$stop;

END xprntr;

B-5

EXAMPLES OF DEVICE DRIVERS

PlIN-86 COMPILER x206ds.pB6
Module Header

iRMX 86 PL/M-86 V2.3 COMPILATION OF MODULE X206DS
OBJECT MODULE PLACED IN :Fl:X206DS.OBJ
COMPILER INVOKED BY: :LAN6:plm86 :Fl:X206DS.P86 COMPACT OPTIMIZE(3) ROM PAGEWIDTH(132) NO TYPE

=
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

$title('x206ds.pB6')
$subtitle('Nodule Header')

1* * x206ds.p86
f
f iSBC 206 device
f
f LANGUAGE DEPENDENCIES: COMPACT RON OPTIMIZE(3)
*1

;-:206ds: DO;

If
f INTEL CORPORATION PROPRIETARY INFORMATION
* * This software is supplied under the terRs of a * license agreement or nondisclosure agreement with
f Intel Corporation and ~ay not be copled or disclosed
* except in accordance with the terls of that agreelent.
* *l

$include(:fl:xcomon.lit)
$save nolist
$include(:fl:xnutyp.lit}
$save nolist
$include(:fl:xparal.lit)
$save nalist
Jinclude(:fl:xiotyp.litl
$save nalist
$include(:fl:xiors.lit)
$save nolist
$include(:fl:xduib.lit)
$save nolist
$include(:ft:xdrinf.lit)
$save nolist
$include(:fl:x206in.lit)
!save nolist
$include(:fl:x206dv.lit)
$save noli st
$include(:fl:xexcep.lit)
$save nolist
$include(:ft:xioexc.lit)
$save nolist
$include!:fl:xradsf.litl
$save nalist

$include(:fl:x206dp.ext)
have nolist
$include(:fl:x206dc.ext}
$save nolist
$include(:fl:x206fm.ext!
have nolist
Sinclude(:fl:xnotif.ext!
$save nolist

B-6

46

47

EXAMPLES OF DEVICE DRIVERS

$subtitle('Local Data')

'* f need$reset array used to determine if device needs to be * reset aftf!r an error. Inrtex£lo by status.
1/

DECLARE

1*

need$reset(24l
FALSE~
TRUE
FALSE!
FALSE'I
TRUE
FALSE"
FALSE,
FAlSE 1
FALSE j

FALSE~
FALSE'I
TRUE,
TRUE

t FALS ... ,
FALSE y

FALSE,
FALSE~
FALSE,
FALSE~
TRUE,!
FALSt"
FALSE y

I='A' C:E t
FALSE, ;

BYTE DAHl(
/f Successful co~pletion */
/* 10 field miscompare *1
/f Data field eRC error *'
/* special for incorrect resultStype 1/
If: Seek error */

if Illegal Record Address *1

/* 10 Field CRe error *i
1* Protocol error f/
1* Illegal Cylinder Address *i

1* Record not found */
/* Data Mark Missing */
i* Format Error *1
1* Write Protected *1

/* Write Error *1

1* Drive Not Ready I!

* unitfstatus is used to set unit status field in iors.
* Indexed by status.
*/

DECLARE

/f

uniUstatus(24l
IO$UNCLASS,
IO$SOFT I
lOtSOFT,
I O$HAflD,
IOfSOFT
IO$UNCLASS,
IOSUNCLASS,
IOSUNCLASS,
IDSHAHD
rr:$U'Nr'! l ... S ~ -;:' ~: ... H;:' ,
lu$:::Od,
lOtSOFT,
IOSHARD
TO$UtJr'I,lro," 1 :ll /~A~.J,

IO$SOFT,
rO$SOFT
ro.tqnrr' • of ... ,", •• 1,

IO$WRPRUi1.
IOSUNCLAS~,
IO$SOFT
Tn,tUNC' ,lc:c: ... \.i,J J __ fL..,,,,,,,
IO$UNCLASS,
IO$UNCLASS,
IO$OPRINT) ;

BYTE DAH,(
!f Successful co~pletion */
If ID field miscompare *1
!f Data field eRe error *1
1* special for incorrect result$type f'
1* Seek error II

/f Illegal Record Address f/

If ID Field eRe error *1
/* Protocol error */
1* Illegal Cylinder Address II

1* Record not found */
/f Data Mark Missing fi
1* Format Error II
/* Write Protected II

1* Write Error 'I

If. Drive Not Ready 1/

I driveSreadv is used to find the drive readv bit * In the drive status. '
1/

B-7

48

49
50 2

51 2

52 2
1:'':'
..J.J 2
54 . .,

i..

55 2
56 2

57 '1
i..

58 ~
.J

59 4
60 4

61 3

62 4
63 4

64 3

65 4
66 4

EXAMPLES OF DEVICE DRIVERS

DECLARE
drive$ready(4) BYTE DATA(020H,040H,OlOH,020HI;

$subtitle('i206$start')

II
I i 206htart
I start procedure for tile iSBC 206
*
I CALLING SEQUENCE:
I CALL i206$start(iors$p, duib.p, ddata$pl;
f

* INTERFACE VARIABLES:
.. iors$p - I/O Request/Result segment pointer
* duib$p - pointer to Device-Unit Information BlocK
f ddatafp - device data segment pointer.
I
f. CAllS:
f io$206
.. for~at$206
f sendS206$iopb ..
*:/

i206$start: PROCEDURE(iors$p, duibSp, ddataSp) PUBLIC REENTRANT;
DECLARE

iors$p POINTER,
duib$p POINTER,
ddataSp POINTER;

DECLARE
iors
duib
dinfofp
dinfa
uinfofp
uinfa
ddata
base
dUIRIY

BASED iorsfp IOSREQfRESSSE6
BASED duibSp DEV$UNIT$INFO$~LOCK,
POINTER,
BASED dlnfo$p I206SDEUICE$INFO,
POINTER,
BASED uinfo$p 1206SUNITSINFO
BASED ddatafp IOfPARM$BLOCK$~06,
WORD,
BYTE;

dinfo$p = duib.device$info$p;
base = dinfo.base;
uinfoSp = duib.unitSinfoSp;

IF (ddata.restore} THEN
RETURN;

dtJ$caseHunct:
DO CASE iors.funct;

/f
f in the following calls the @ddata is literally
f i opbtp (i. e., the Ilai nter to the i opb) •
f/

case$read:
DO;

CALL io$206(base, iorsSp, duibfp, @ddata);
END casdreadj

case:fwrite:
DO;

CALL iof206(base, iors$p, duib$p, @ddatal;
END casehrite;

case$seek:
DO;

CALL io$206lbase, iars$p, duibfp, @ddata};
END casdseek;

B-8

67 .,
.J

68 4
69 4
70 4

71 ~
oJ

72 5
73 5
74 5
75 4

76
.,
.J

77 4
78 4

n 4
80 5
81 5
82 5
83 C'

oJ

84 5
85 5
86 4
87 4
88 4

89 4
90 5
91 5
92 5
Q7 ,.J 5
9,4 5
or ,oJ 4

96 3

i17 4
98 4
99 4

100 7
.• 1

101 4
102 4
103 4

104 3

105 4
106 4
107 4

108 3

109
., ..

EXAMPLES OF DEVICE DRIVERS

case$spec$funct:
DO;

IF iors.subffunct = FS$FORMAT$TRACK THEN
CALL forlat$206(base, iars$p, duib$p, @ddatalj

ELSE
DO; .

lars. status = E$IDDR;
iars.actual = O·
iors.done = TRUE;

END;
END caseSspecffunct;

case$attach$device:
DO;

dUlmy = (duib.dev$gran = 5121;
IF ((input(subSsystem$portl OR 073Hl () OFBH) OR

(((lnput(disk$conflg$portl AND SHLIOIOH,SHRlduib.unit,2)))
DO;

ENDj

iors.status = E$IO;
iors.unit$status =' IOSOPRINT;
iors.actual = O·
iors.done = TRUE;
RETURN;

ddata.inter = interonlask;
ddata.instr = restorefopj
IF NOT sendS206fiopb(base, @ddata) THEN

/f
* the board would not accept the iopb
* so. 'II

*/
DO;

iors.status = E$lO;

(} 0) <> dummy) THEN

iors.unit$status = IOSSOFT OR SHLlinputlresultSbytefport), al;
iors.actual = o·
iors.done = TRUE;

END'
END casetattachSdevicej

case$detach$device:
DO;

iors.status = ESOK;
iors.done ~ TRUE; .

END case$detach$devicej

case$open:

DO;
. iors.status = EfOKj

iors.done = TRUE;
END case$openj

c a se$cl ose:
DO;

iors.statu5 = E$OK;
iors.done :: TRUE; .

END case$close;

END do$case$functj

END i206$startj

B-9

tlO
111

112

113
114
115

116
1 ... 1 !

118

11 q

120

121
122
1'-'7 L.J

124

125
ph
127
128

t29

130
:31

132
133

1
2

2

2 ., ..
'"! ..
2
2
7
.}

":!
.j

7
.j

4
4
4
4

~
-J

5
4
4

7
.j

3
7
.J

4
4

EXAMPLES OF DEVICE DRIVERS

$subtitle('i206$interrupt')

/f
f i20b$interrupt
.. interrupt procedure for the iSBC 206 ..
f CALLINS SEQUENCE: * CALL i206finterrupt(iors$p, duib$p, ddata$p)j
f
f £NTERFACE VARIABLES:
f lors$p - I/O ReQu~st!Result segment pointer
f duib$p - pointer to Device-Unit Inforlation Block
f ddatafp - device data segment pointer.
i-
f CALLS:
.. i 206$start
.. sendf206$iopb
.. rq$send$message
f
f/

i206!interrupt: PROCEDUREliors'p, duib.p, ddata$pl PUBLIC REENTRANT;

POINTE",
DECLARE

lors$p
duib$p
ddata$p

POINTEH,
POINTEI~j

DECLARE
lors
duib
dinfo$p
dinfo
ddata
temp
base
spindle
status

BASED iorslp IOSREQfRESfSESJ BASED duibSp DEV$UNIT$INFO$~LOCK,
POINTER,
BASED dlnfoSp 1206$DEVICE$INFO
BASED ddata$p IO.PARM$BLOCK$20b,
BYTE,
WORD,
WORD,
WORD;

dinfo$p = duib.device$infoSp;
base = dinfo.basei
spindle = shrlduib.unit,.2);

IF (input(resultitype'portJ AND 3) = 0 THEN
done$int:

DO;
status = input(result$byteSport);

IF ddata.restore THEN
di d$restore:

DO;
ddata.restore = FALSE;
ddata.statvsispindlel = status;
IF iors$p () 0 THEN
restart:

DO;

1* 4 units/spindle */

CALL i206$start(iors$~, ddata$p, duib$p};
END re~,tart;

RETURN;
END didfrestore';

ddata.status(spindle) = status;

IF iors$p <) 0 THEN
val i dh ors:

DO;
IF status () 0 THEN
bad$status:

DQ;

B-IO

134 5
135 5
136 5
137 5

138 5
139 5
140 5
141 5
142 5

143 6
144 6
145 6
146 6

147 5
148 4

149 5
150 5
151 5
152 4
153 3
154 2

155 3
156

..,

.J

157 4
158 4
1C'Q .,}, 4
160 3

161 3
162 4
163 4
164 4
165 3

166 2

167
168 2

EXAMPLES OF DEVICE DRIVERS

iors.status = E$IO'
IF (status (= 010H~ THEN

telP = status;
ELSE

temp = shr(status, 4) + OOFH;
iors.unlt$status = unltSstatus(temp) OR SHL(status,Slj
i Drs. actual = 01
iors.done = TRUtj
IF needSreset(ddata.status(iors.unit I 4)) THEN
recalibrate:

DO;
/f

f. Note: lust inde~ drive select
* bits from iors.unit.
*/

ddata.inter = interonmaskj
ddata.instr = restore$op'
ddata.restore = send$206tiopbldinfo.base,

END recalibratej

END bad$statusj
ELSE ok$status:

DO;
iors.actual = iors.count;
iors.done = TRUE;

END oktstatus;
END valid:$iors;

END done$int;
ELSE status$i. nt:

DO;

found$spindle:

temp = inputlinter$statJport);
DO spindle=O TO 3;

END;

IF (temp AND SHl(~, spindlel) <> 0 THEN
GOTO found$splndlej

spindle = SHLlspindle,2l;
DO telp=spindie TO splndle+3j

@ddata)j

IF ((inputlresultSbyte$port) AND drive$ready(spindle))
CALL notify(temp, @ddatalj

= 0) THEN

END'
END status$intj

END i206Sinterruptj
$suhtitle('i206$init')

if:
* i206Sinit
1: init procedure for the iSaC 206
t
I CALLING SEQUENCE:
f CALL i206$initlduibSp, ddata$p, status$p)j
f
f INTERFACE VARIABLES:
f duib$p - pointer to Device-Unit Information Block
* ddata$p - device data segment pointer.
, status$p - pointer to WORD indicating status of operation
* * CALLS:
f <none>
* fl

i206$init: PROCEDURElduibSp, ddata$p, status$p) PUBLIC REENTRANT;
DECLARE

duib$p
ddata$p
status$p

POINTER,
POINTER,
POINTER;

B-1!

EXAMPLES OF DEVICE DRIVERS

169 2 DECLARE
duib BASED duib$p DEV$UNITiINFO$BLOCK,
dinfo$p POINTER,
dinfo BASED dinfo$p 12061DEVICE$INFO
ddata BASED ddata$p IOtPARM$BLOCK$206,
status BASED status$p WORDi

170 2 DECLARE
NORD;

171 2 dinfo$p = duib.device$info$p;

/f
f. Reset 206; not there or not hard disk ==} Oops~
*1

172 '1 Dutfutlreset$port) = 0; ..
173 2 sta us = HOKj

174 2 ddata.restore = FALSEj

175 2 END i206$initj

176 END x206ds;

MODULE INFORMATION:

CODE AREA SIZE = 0300H 768D
CONSTANT AREA SIZE = 0034H 52D
VARIABLE AREA SIZE = OOOOH OD
MAXIMU" STACK SIZE = 0046H 700
1037 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

DICTIONARY SUMMARY:

96KB MEMORY AVAILABLE
18KS MEMORY USED (18X)
OKa DISK SPACE USED

END OF PL/M-86 COMPILATION

PL!M-86 COMPILER x206io.pB6: iSBC 206 110 Module
/'!odule Header

iRMX 86 PL!M-86 V2.3 COMPILATION OF MODULE X206IO
OBJECT MODULE PLACED IN :F1:X20HO.OBJ
COMPILER INVOKED BY: :LANG:plrn86 :Fl:X206IO.P86 COMPACT OPTIMIZE(3) ROM PAGEWIDTH(132) NOTVPE

Hitle('}:2%io.p86: iSBC 206 ItO Module')
$subtitle('Module Header')
x206io: DO;

If
f

* ..
* ..
* ..
*1

INTEL CORPORATION PROPRIETARY INFORMATION

This software is supplied under the terms of a
license agreel\ent or nondisclosure agreement with
Intel Corporation and may not be copIed or disclosed
except in accordance with the terms of that agreement.

B-12

32

EXAMPLES OF DEVICE DRIVERS

If
* This module lodifies the 206 paraleter block and passes the
* address of it to the iSBC 206.
I

* LANGUAGE DEPENDENCIES: COMPACT ROM OPTIMIZE(3)
II

$include(:fl:xcolon.lit)
= $save nalist

$include(:fl:xnutyp.lit}
= $save nol i st

$include(:fl:xiotyp.lit)
= $save nolist

$include(:fl:xparam.lit)
= $save nolist

$include(:fl:x206dv.litl
= $save nolist

$include(:fl:x206in.litJ
= $save nolist

$include(:fl:xiors.lit)
= isave nolist

$include(:fl:xduib.lit)
= $save nolist

Sinclude(:fl:xtrsec.lit)
= $save nolist

$include(:fl:xexcep.litJ
= $save nolist

$include(:fl:xioexc.lit)
= $save nolist

$include(:fl:x206dc.extl
= $save nolist

1*
I this module also does seeks
*1

DECLARE
i206opcodes (fl

READ$OPl.
WRITE$Ot' !
SEEK$OP

\. , ,

BYTE DATA(

$subtitle('ioS206: iSBC 206 lID Module')

if.
.. io$206
f 110 module (read/write/seek)
'*' f CALLING SEQUENCE: * CALL io$206 (base, iorsSp, duibSp, iopbSp);
* .. INTERFACE VARIABLES:
f base - base address of the board.
f iors$p - I/O Request/Result segment pointer
.. duib$p - pointer to Device-Unit Inforf.ation Block
.. iopbSp - pointer to I/O parameter block.
*'
.. CALLS:
.. sendf206$iopb(base, @iopb)
f/

33 1 io$206: PROCEDURE (base, iors.p, duibSp, iopbfpl REENTRANT PUBLIC;
34 2 DECLARE

base WORD
iors$p POINtER,
duib$p POINTER,
iopb$p POINTER;

B-13

EXAMPLES OF DEVICE DRIVERS

35 2 DECLARE
iors
ts
ts$o
duib
iopb

36 2

37 2
38 2
39 " .i..

40 2
41 2
42 2

BASED iors$p IO$REQfRESfSEG,
DWORD,

pl atter
spindle
surface

TRACKfSECTORSSTRUCT AT(@ts)
BASED duibSp DEV$UNIT$INFO$BLOCK,
BASED iopb$p IO$PAR~$BLOCK$206,
BYTE,
BYTE,
BYTE;

ts = iors.dev$loc;

spindle = shr(iors.unit, 2);
platter = iors.unit AND 003H;
surface = ts$o.track AND 0000lH;

iopb.inter = INTERfONfNASK;
iopb.cylSadd = shr(tsfo.track, 1);
iopb.instr = i206opcodesliors.funct)

1*

shl (spindle, t.) OR
shl(platter, 61 OR
shl(surface, ~:)j

If 4 units/spindle f;
/f (as above I f/
/f select surface fl

1* track/2 = cylinder fl
OR '

* note: the controller only supports 512 or 128 byte sectors
* so no checking is done.
if/

43 2
44 2

iopb.rScount = iors.count / duib.dev$granj /f divide by sectors size fl
iopb.recfadd = (ts$o.sector + 1) OR

45 2
shr(ts$o.track AND 0200H, 2); 1* (cyl AND OlOOHI 12*/

iopb.buff$p = iors.bufffp;

46 2 IF NOT sendS206Jiopblbase, @iopbl THEN

Ii

47 2
48 3
49 3
50 3
C'I J. "

52 2
C'7
.,J.;

f the board did not accept the iopb so ...
fl

DO;

END;

iors.status = IOSSOFT;
iors.actual = 0; .
iors.done = iRUE;

END io$206;

END x2%ioj

MODULE INFORMATION:

CODE AREA SIZE = OOD5H 213D
CONSTANT AREA SIZE = 0003H 3D
VARIABLE AREA SIZE = OOOOH OD
MAXIMUM STACK SIZE = 0022H 34D
605 LINES READ
o PROGRAM WARNIN6S
o PROGRAM ERRORS

DICTIONARY SUMMARY:

96KB MEMORY AVAILABLE
12KB MEMORY USED 112%)
OKB DISK SPACE USED

END OF PL/M-86 COMPILATION

B-14

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER x206dc: iSBC 206 parameter handler
Module Header

iRMX 86 PL/M-86 V2.3 COMPILATION OF MODULE X206DC
OBJECT MODULE PLACED IN :Fl:X206DC.OBJ
COMPILER INVOKED BY: :LAN6:plm86 :Fl:X2060C.P86 COMPACT OPTIMIZE(3) ROM PAGEWIDTH(132) NOTYPE

9
10 2

11 2

12
13

14
15

16

'} ..
2

2
2

2

$title('x206dc: iSBC 206 parameter handler')
$subtitle{'Module Header'}
x206dc: DO;

1*
f INTEL CORPORATION PROPRIETARY INFORMATION
* * This software is supplied under the terms of a * license agree.ent or nondisclosure d9reement with
I Intel Corporation and may not be copled or disclosed
* except in accordance with the terms of that 'agreement.
of

*'
If * This module contains the commands for the 206 controller •
• * LANGUAGE DEPENDENCIES: COMPACT ROM OPTIMIZE(3)
I!

$include(:fl:xcomon.lit)
= $save nolist

Sinclude(:fl:xnutyp.litl
= $save nolist

fincludel:fl:x206dv.litl
$save nolist

Ssubtitle('Send 206 110 Parameter Block')

If
1: sendS206:h opb
f send the iSBC 206 the address of the parameter block
* * CALLING SEQUENCE: * CALL sendS206$iopb (base, iopb$p)j
* * INTERFACE VARIABLES:
f base - base address of board.
* iopbSp - 1/0 parameter block pointer
* * CALLS:
* <none>
*1

sendi206Siopb: PROCEDURE (base, iopb$pl BOOLEAN REENTRANT PUBLIC;
DECLARE

base
iogb$p

DECLARE
iopbSp$o
iopb
drive

WORD
POINfER;

PSOVERLAY AT(@iopbSp)
BASED iopb$p IO$PARMS~LOCK$206,
BYTE;

drive = shrliopb.instr AND 030H, 4};
drive = shl(OlH,drive);

IF (input(controller$stat)) = (CGMMAND'9USY OR drivel THEN
RETUF:N (FALSE) ;

output (lo$ofHport) = low liopb$p$o.offsetl;

B-15

EXAMPLES OF DEVICE DRIVERS

17 2 IF (in,utlcontrollerfstat) AND COMHANDfBUSYI () 0 THEN
18 2 RE URN(FALSElj

If
f lade it to here so output rest of topb address
fl

19 ., output (losegport) = low (ioPb$~$o.base)f
20 2 output (hi$se~$port) = high (iopb p$o.base •
21 2 output (hi$of $port) = high (iopb$pfo.offset);

22 2 RETURN (TRUE) ;

23 2 END send$206fiopbj

24 END x206dC;

MODULE INFORMATION:

CODE AREA SIZE = 0060H 96D
CONSTANT AREA SIZE = OOOOH OD
VARIABLE AREA SIZE = GOOOH OD
MAXIMUM STACK SIZE = OOOCH 12D
208 LINES READ
o PROGRAM WARNIN6S
o PROGRAM ERRORS

DICTIONARY SUMMARY:

96KB MEMORY AVAILABLE
5KB MEMORY USED 1St)
OKB DISK SPACE USED

END OF PL/M-86 COMPILATION

PL/M-B6 COMPILER x206f1.pB6
Module Header

iRHX 86 PUM-86 V2.3 COMPILATION OF MODULE X206FM
OBJECT MODULE PLACED IN :Fl:X206FM.OBJ
COMPILER INVOKED BY: :LAN6:plmB6 :Fl:X206FM.P86 COMPACT OPTIHIZE(3} ROM PAGEWIDTH(132) NOTYPE

$title('~206fm.pB6')
$subtitle('Hodule Header'}

If
f x20bftl.p86

* iSBC 206 device
* formats one track on hard disk
of

* LANGUAGE DEPENDENCIES: COMPACT ROM OPTIMIZE!3}
II

x20bfm,: DO;

B-16

EXAMPLES OF DEVICE DRIVERS

If
* INTEL CORPORATION PROPRIETARY INFORMATION
* * This software is supplied under the terls of a
I license agreelent or nondisclosure agreelent ~ith * Intel Corporation and lay not be copIed or disclosed
I except in accordance with the terls of that agreelent.
f
II

If
f This ~odule builds the 206 parameter block and passes the
f address of it to the iSBC 206.
*
f note: this format procedure deduces ma~$sectors fro. the
* DEV$UNITtINFO$BLOCK (duib.devtgranJ. it does NOT check to see if
* the operator has set the switches on the controller correctly. * sectors may be 128 or 512 bytes • ..
fl

$include(:fl:xcomon.lit)
= $save nolist

$include(:fl:xnutyp.lit)
= $save nolist

$include(:fl:xiotyp.lit)
= $save nolist

$include(:fl:xparam.lit)
= $save nolist

$include(:fl:x206dv.lit)
= $save nolist

$include(:fl:x206in.!it)
= $save noIist

$include(:fl:xradsf.lit)
= $save nolist

$include(:fl:xiors.lit)
= $sa've nolist

$include(:fl:xduib.lit)
= $save noIist

$include(:fl:xtrsec.litl
= $save nolist

$include(:fl:xexcep.litl
= $save nolist

$include(:fl:xioexc.lit)
= $save nolist

$include(:fl:x206dc.ext)
= $save nclist

$subtitle('format!206: Format track procedure')

,If
1: formaU206
* format a track on the 206
* * CALLING SEQUENCE:
f CALL format$206 (base, iors$p, duih$p, iopb$plj
* , INTERFACE VARIABLES:
* base - base address of board.
f iors$p - lID Request/Result segment pointer
* duib$p - painter to Device-Unit Inforlation Blod
* iopb$p - 1/0 parameter block pointer.
* , CALLS:
I buildS206flttable * send206iopb
II

B-17

36
37 2

38 2

7q
,..), 2
40 2
41 2
42 ."

,,)

43 ."
J

44 3
45 .j

46 3

47 2
48 2
49 2

50 2
51 ,., ..
52 2
C'''1
..i.J 2

54 2

55 '"!
i-

C"
..10 2
57 ,., ..

58 2

59 2

60 2
61 3
62 7

.J

63 3
64 ."

.J

'C' OJ 2

EXAMPLES OF DEVICE DRIVERS

format$206: PROCEDURE (base, iors$~!, duib$p, iopb$pl REENTRANT PUBLIC;
DECLARE

base WORD
iors$p POINtER,
duib$p POINTER,
iopb$p POINTER;

DECLARE
iors BASED iors$p IO$REQIRES$SEG,
forlat$info$p POINTER
forlat$info BASED formal$info$p FORMAT$INFO$STRUCT,
duib BASED duib$p DEYfUNITSINFQ$BLOCK,
i opb BASED i opb$p WIPARMSBLOCKf206,
platter BYTE,
spindle BYTE,
surface BYTE,
max$sectors BYTE;

farlattinfo$p = iors.aux$p;
IF farsat$info.track$nul) i206$TRACKtMAX THEN

DO;

END;

iors.status = E$SPACE;
iars.actual = o·
iors.done = TRUE;
RETURN;

spindle = shr!iors.unit, 2);
platter = iors.unit AND 003H;
surface = formatfinfo.track$nut AND 0000lH;

1* 4 units/spindle II
1* (as above) II
/* select surface *1

iopb.inter = INTERONHASK OR FORMATfTRACK$ON;
iopb.cyl'add = shr(format$infa.track$nul, II; 1* track/2 = cylinder f/
iopb.rec$add = shr(far~at$info.track$num AND 0200H, 2); 1+ set if over 256 cylinders fl
iopb.instr = for.atSop OR .

shl(spindle, 41 OR
shl!platter, 6) O~
shl(surface,3}j

iopb.buff$p = @iopb.format$table;

IF duib.devigran = 128 THEN
maxSsectors = 36;

ELSE
/f

t if not 128 then MUST be 512 byte sectors
fl

maxSsectors = 12;

CALL build206fmt$table(@iopb.format$table,
format$info.trackSnum,
fcrmat$info.track$interleave,
format$info.trackSskew,
format$info.filltchar,
madsectorsl j

IF NOT sendS206Siopb(base, @iopbJ THEN
1*

f the board did not accept the iopb so ...
*1

DO;
iars.status = IO$SOFTj
iors.actual = O·
iars.done = TRUE:

END; .

END foruU206;

B-18

66 1
67 2

68 2

69 2

70 2
71 3
7'1
,.j. 3
..,~ 3 ".J

74 '1
i..

75 2

76 3
77 4
78 4

79 .j

80 ~
.j

81 ~
.j

82 2

83

EXAMPLES OF DEVICE DRIVERS
If

f build$206SfltStable
f fill out for~at table
f

f CALLING SEQUENCE:
f CALL buildS206$fltStable(bufSp, track, intSfact, skew, fil1$char, lax$sectors);
f

f INTERFACE VARIABLES:
f bufSp - address of forlat table.
f track - track to be formatted. * intSfact - interleave factor.
* skew - squew fro! physical sector one.
* fillSchar - used to fill sectors.
f max$sectors - maximum number of sectors
f

* CALLS: * <none>
* f No error checking on skew, int$fact parameters; if nonsense, the algorithm
* completes & formats the track in a strange ~anner.
I!

buildf206ff.tftable: PROCEDURE(buf$p, track, intSfact, skew, fillSchar,max$sectors) REENTRANT;
DECLARE

bufSp POINTER,
track WORD,
intSfact ByrE,
skew BYTE,
fillichar BYTE,
~ax$sectors BYTE;

DECLARE
s
i

DECLARE

BYTE,
BYTE;

fmt$tab BASED buffp (36) STRUCTURE (
record$address BYTE,
filUchar BYTE);

DO i = 0 TO (max$sectors - 1);
fmt$tab(i).recordSaddress = OFFH;
fmt$tab(il.fill$char = fill$charj

END;

s = skew MOD max$sectors;

DO i = 1 TO max$sectcrs;

DO WHILE fmtStab(sl.record$address (> OFFH;
5 = (5 + 1) MOD max$sectors;

ENDj

fmtttab(sl.record$address = ij
s = (s + inttfact) MOD max$sectors;

END;

END build206f~t$table;

END x206fm;

MODULE INFORMATION:

CODE AREA SIZE = 0192H 402D
CONSTANT AREA SIZE = OOOOH OD
VARIABLE AREA SIZE = OOOOH 00
MAXIMUM STACK SIZE = 0028H 40D
743 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

DICTIONARY SUMMARY:

96KB MEMORY AVAILABLE
13KB MEMORY USED (13%)
OKS DISK SPACE USED

END OF PL/M-86 COMPILATION

B-19

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER x8274: 8274 terminal device driver
Module Header

iRMX 86 PL/M-86 V2.3 COMPILATION OF MODULE X8274
OBJECT MODULE PLACED IN :Fl:X8274.0BJ
COMPILER INVOKED BY: :LAN6:plI86 :Fl:X8274.P86 COMPACT OPTIMIZE(3) ROM PASENIOTH(132) NOTYPE

Stitle('1.8274: 8274 terminal device driver')
$subtitle('Hodule Header'}

If
f TITLE: x8274
* f DATE: 27 FEB 84
*
f ABSTRACT:
•

This module is the interface between the iRMX 86
Terminal Support, and the 8274 MPSC. It is a

f

f

*
* *

rewritten version of a .Iodule of the sale nale dated
20 Jan 83. The r~writting was necessary to correct
initialization timing prooleMs and to add support for
various timer devices, i.e. 8253-4, 80130, and 80186-8.

* LAN6UAGE DEPENDENCIES: PLM86 COMPACT ROM
1/

1*
• INTEL CORPORATION °ROPRIETARY INFORMATION
f

f This software is supplied under the terms of a
* license agreement or nondisclosure agree.ent with
* Intel Corporation and may not be copled or disclosed
f except in accordance ~ith the terms of that agreement.
f

*1

x8274: DO;

$include(:fl:xcomon.lit)
= $save nolist

$include(:fl:xnutyp.lit)
= $save nolist

Sinclude(:fl:xiotyp.litl
= $save nolist

$include(:fl:xexcep.litl
= $save nolist

$include(:fl:xtssQw.extl
= $save nolist

$include(:fl:xtsti~.ext}
= 1*
= * External Declaration
= * for timer support procedure.
= *1
= 'SAVE NOL!ST

$includei:fl:xdelav.extl
= $SAVE NGLIST '

$subtitle('Data structures and li~erals')

/f
f 8274 register values
I!

B-20

20

21

22

EXAMPLES OF DEVICE DRIVERS

DECLARE
WRO LI TERALL Y 'OOH' ,
WRl LITERALLY 'OlH',
WR2 LITERALLY '02H' I

WR3 L ITERALL Y , 03H' ,
WR4 LI TERALL Y '04H' ,
WR5 LITERALL Y 'OSH',
WR6 l I TERALL Y , ObH' I

WR7 LITERALLY '07H' ,
RRO LITERALLY 'OOH',
RRl LITERALLY'OlH',
RR2 LITERALLY '02H';

1*
f. 8274 command values
f/

DECLARE
NULL CMD LITERALL Y , OOH' ,
NULL -VECTOR LI TERALL Y , OOH' ,
RESET EXT INT LITERALl Y , tOW
CHANNtL RtSET LITERALLY , tSH' ;
ENABLE lNT NEXT RX LITERALLY '20H',
RESET rx IRT - LI TERALL Y , 2aW ,
ERROF;-RESET LITERALLY '30H',
END_O~)NT LI TERALLY ' 38H ' ;

If
f. 8274 write register commands.
*1

DECLARE

l*

WRIJNIT

WRl NQ RX INT
WR1)(INT

t~R3 RX DISABLE
WR(INIT

i~R5 TX ENABLE

LITERALLY '016H',

LITERALLY '006H',
LITERALLY '004H',

LITERALLY '004H',
LITERALLY 'OC1H',

LITERALLY 'OCOH',
LITERALLY '044H',

LITERALLY 'OEAH',

LITERALLY 'OE2H',
LITERALLY 'OEAH',
LITERALLY '06AH';

f. status register bit masks
*1

DECLARE
VECTOR MASK
TEST VtCTOR
INT PENDING
NO TNT VEcr
RCCHAR RDY
n -BUFFt'R EMPTY
i8274$INPOTSERROR

LITERALLY 'OEOH',
LITERALLY 'OA5H',
LITERALLY '002H',
LITERALLY '01CH',
LITERALLY 'OOtH',
LITERALLY '004H',
LITERALLY '070H';

B-21

If int an all Rx chars and
* special conditions.
* Parity affects vector,
* variable vector,
f Tx int enable, No
'* external int.
*1

1* disable Rx interrupts *1
i* Disable Rx and Tx * interrupts
f./

/* non vectored iot */
1* Rx B bits/char,

f. R>: enable
f.1

if 16X clock, 8 bit data,
* 1 stop bit, no parity
*1

If Tx 8 bits data,
* Tx enable, RTS enable
fi

EXAMPLES OF DEVICE DRIVERS

If.
f Flags values
f:1

24 DECLARE

25

26

27

28

If:

EVENSMODE LITERALLY '003H',
ODD$MODE LITERALLY 'OOtH',
NOSPARITYSMODE LITERALLY '~O~H',
INSPARITYSHASK LITERALLY '030H',
OUT$PARITYfMASK LITERALLY 'ICOH',
STRIPf[NPUTSPARITYSMODE LITERALLY 'OOOH',
PASSSINPUTfPARITYSMODE LITERALLY 'OIOH',
EVENSINPUT$PARITYSMODE LITERALLY '020H',
ODDSINPUTSPARITYSNODE LITERALLY '030H'l
SPACESOUTPUT$PARITYSMODE LITERALLY 'OuOH',
MARKSOUTPUTSPARITYSMODE LITERALLY '040H',
EVENSOUTPUTSPARITYSNODE LITERALLY 'OaOH',
ODDSOUTPUT$PARITY$MODE LITERALLY 'OeOH',
PASSSOUTPUTSPARITYSMODE LITERALLY 'IOOH',
OUTSPARSCHECK LITERALLY '080H';

t Baud rate values
*l

DECLARE
HARDWARESBAUDSSELECT
AUTOSBAUD$SELECT
OUHBAUDSSAHE

.1*

LI TERALL Y '0',
LI TERALL Y '3',
L ITERALL Y '1';

* interface to terminal support
*1

LITEHALLY '08W,
L! TE;;:ALLY 'OOH',

DECLARE
MORE$!NTERRUPT
NO$INTERRUPT
DELAHINTERRUPT
INPUHINTERRUPT
OUTPUHINTERRliPT
RfNG$INTERRUPT
CARRIER$INTERRUPT

LITERALLY '05H + MORE$INTEHRUPT',
LITERALLY 'OIH + MOREfINTERRUPT',
LITERALLY '02H + MORESINTERRUPT',
LITERALLY '03H + MORESINTERRUPT',
LITERALLY '04H + MORESINTERRUPT';

i*
f Controller Data Structure
*1

DEC~ARE
TSSCDATA LITERALLY

DECLA~:E
TSSCDATAl LITERALLY

TS$CDATA2 LITERALLY

'~TRUCTURE(
TSSCDATAl,
TS$CDATA21 'i

'icsfdata$segment
status
i nterrupUty~e
interrupting$unit
dinfo$o
drivedcdahSp

'rE'served (34)
udata (1i

B-22

SE6MENT,
WORD,
BYTE,
BYiE
P01~,ltEP
, 1", "I
POINTER !

BYTE,
BYTE ;

EXAMPLES OF DEVICE DRIVERS

1*
f Unit Data Structure
II

29 DECLARE

30

TS$UDATA LITERALLY 'STRUCTURE (

DECLARE
TS$UDATAI LITERALLY 'uinfo$p

TSfUDATA1,
TS$UDATA2
TSSUDATA3J ';

tE!rdf lags
in$rate
oLIUrate
sc:rollSnumber
translation (8li

POINiER,
:JRD,
!'lORD,
WORD,
WORD,
BYTE,

TSSUDATA2 LITERALLY 'input$controlStable(33) BYTE,
unitSnumber BYTE',

TSSUDATA3 LITERALLY 'fill (891)

1*
f 8274 Device information Structure
*1

31 DECLARE
i8274$CONTRDLLER$INFD LITERALLY 'STRUCTURE!

DECLARE
i827HINFQSl
i827HINFO$2

i827HINFO$3

i 8274$ I NFOH

i827HINFO$5

i827HINFO$6

i8274$INFO$7

LITERALLY
LITERALLY

LITEF:ALLY

LITERALl Y

LITERALLY

LI TERALL Y

LITERALLY

B-23

BYTE' ;

i 8274$ I NFOfl ,
i8274$INFO$2,
i 827HINFOn,
i8274$INF0$4,
i8274flNFO$5,
i8274$INFOS6,
i827HINFO$71 'j

33

34 ')
J..

"'1:' 2 oj-J

36 ')
.I.

EXAMPLES OF DEVICE DRIVERS

$subtitle('i8274$init')

1* * TITLE: i8274$init ..
f CALLING SEQUENCE:
* CALL i8274$init(cdata$p};
f

* INTERFACE VARIABLES:
* cdata$p POINTER to controller data ..
* CALLS:
f none
*
f ABSTRACT:
f Initializes the 8274 chip.
*/

i8274$init: PROCEDURE(cdata~p) REENTRANT PUBLIC;

DECLARE
cdatafp
cdata BASED cdataSp

DECLARE
i827Hinfo$p
i8274$info BASED i8274$info$p

DECLARE

POINTER}
TS$CDATHj

POINTER
i8274$CONTROLLER$rNFO;

port WORD;

i*
f Get the configuration info
II

37 2 i8274SinfoSp = cdata.dinfoSp;

l*
I Initialize driver data area (10 bytes In lengthl
1/

38 2 C~LL setbiOFFH, cdata.driver$cdata$p, 10);

39 2
40 1.

41 ') ...
42 'i ...
43 2
44 !

45 !

46 2
47 2

48
49
50
51
52

1*
f Reset and Initialize the 8274.
f/

DISABLE; .
port = 18274$lnfo.ch_a_status_port;

OUTPUTlnortl = WRO;
CALL defayll01; .
OUTPUTlportl = CHANNEL_~ESET;
CALL delay(lO) j
ENABLE;

DISABLE;

!f point to WRO 1/
!i insure delay between outputs *1
/1 reset channel A If
i* insure delay between outputs ,/

port = i8274finfo.ch_b_status_port;

OUTPUT(portl = WRO;
CALL delay(10);
OUTPUT(portl = CHANNEL_RESETj
CALL delay(10lj
ENABLEj

B-24

* point to WRO II
I insure delay betwec ·)utputs II
* reset channel A *1
f insure delay between outputs 1/

EXAMPLES OF DEVICE DRIVERS

53 2 DISABLE;
54 2 OUTPUT(tOrtl = WR4j /f point to WR4 */
55 2 CALL de ay (10) j /* Insure dela~ between outputs f/
56 2 OUTPUT(fort} = WR4 INIT; /* initialize R4 */
57 2 CALL de ay(IO}; - /f insure delay between outputs */
58 2 ENABLE;

59 2 DISABLE;
60 2 OUTPUT(rort} = WRS; 1* point to WRS */
61 2 CALL de ay(10); if lnsure delay between outputs *1
62 2 OUTPUT(fortl.= WRS_TX_ENABLE; 1* initialize WR5 - Tx enabled *1
63 2 CALL de ay(ll1); It insure delay between outputs */
64 2 ENABLE;

65 2 DISABLE;
66 2 OUTPUT(fortl = WR3; 1* point to WR3 */
67 2 CALL de ay(1(1) j 1* insure delay between outputs *1
68 2 OUTPUT(rortJ = WR3 INITj 1* initialize WR3 - Rx enabled 1/
69 2 CALL de ay (10); - 1* insure delay between outputs *1
70 2 ENABLE;

71 2 DISABLE;
72 2 OUTPUT(rort} = WRl; /t point to WRI t/
73 ,., CALL de ay(lO); 1* insure dela~ between outputs f/ L

74 2 OUTPUT(rort) = WRl_NO_INT; 1* initialize RI - Interrupts disabled f/
7f: 2 CALL de ay (10) ; If insure delay between outputs f/ I·j
"r' ,., ENABLE; 10 L

77 2 DISABLE;
78 2 port = i8274$info.ch_a_status_port;

79 2 OUTPUT(port) = WR4; If point to WR4 t/
80 2 CALL delay(10); . 1* insure delay between OUTPUTs fl
81 2 aUTPUT(port) = WR4 INIT; 1* initialize WR4 */
82 2 CALL delay(10); - /* insure delay between OUTPUTs *1
83 .., ENABLE; L

84 2 DISABLEj
85 '1 QUTPUT(portl = WRSj !I peint to WR5 1/ i-

86 .., CALL de! ay (10); If insure dela~ between OUTPUTs *; L

87 2 OUTPUT(lortl = WRS_TX_ENABLE; /* initialize RS - Tx enabled 1/
88

. ., CALL de aydO); It insure delay ~etween OUTPUTs II .i..

89 'i ENABLE; J.

9(1 2 DISABLE;
91 .., OUTPUT(portl = WR3; 1* point to WR3 */ i-

92 " CALL delay(10); /* insure delav between OUTPUTs *1 I..

93 .., OUTPUT(oort) = WR3 IN!T; 1* initialize WR3 - Rx enabled *1 ..
94 2 CALL delay(lO); . 1* insure delay between OUTPUTs 1/
95 2 ENABLE;

96 ., DISABLEj I..

97 .., OUTPUT(oort) = WRlj 1* point to WRl II L

98 2 CALL delay(10); 1* insure delay between OUTPUTs */
99 2 9UTPUT(~ort).~ WR1_NO_!NTj 1* initialize WRl - Interrugts disabled II

100 2 LALL de ay (101 ; 1* insure delay between OUT, UTs *1
101 2 ENABLE;

102 2 DISABLE;
103 2 port = iB274Sinfo.ch_d_status_port;

104 OUTPUT(portl = WR2; 1* oint to WR2 1/
105 CALL delay(10); if nsure delay between OUTPUTs *1
106 OUTPUT(portl = WR2 INIT; /* nitialize WR2 - non vectored int 1/
107 CALL delay(lO); 1* nsure delay netween OUTPUTs *1
108 ENABLE;

B-25

109 2
110 2

111 2
112 2
113 2
114 2

115 2

116 2
117 2
118

.,
I..

119 2

120 2
121 .,

I-

1'"'''
.,

1..4 4

123 '1
4

124 2

125 2
1'"1' i.O 2
127 2

t28
.,
...

129 2
130 2

131 '1
I-

132

133 2

EXAMPLES OF DEVICE DRIVERS

DISABLE;
port = 18274tinfo.ch_b_status_port;

/f

OUTPUT(port) = WR2;
CALL delay(lO);
OUTPUT(port) = NULL VECTOR;
ENABLE; -

1* point to WR2 *1
1* insure delay between OUTPUTs *1
If initialize WR2 - non vEctored int *1

f Set the interrrupt vector in R1B to some value, and then read it * back to see if the chip is really there, then set to the desired
* value.
II

cdata.status = ESOK;

OUTPUT(port} = WR2;
CALL delay(10}j
OUTPUT(port} = TEST_VECTOR;

CALL TIME(10};

If point to WR2 */
1* insure delay between OUTPUTs *i
i* interrupt vector for RR2B */

OUTPUT(port) = RR2; 1* point to RR2 fl
CALL delayll0}; /f insure delay between OUTPUTs */

IF (INPUT(port) AND VECTOR MASK) <) (TEST_VECTOR AND VECTOR MASK)
THEN -

cdata.status = E$IO;

CALL TIME(10);

OUTPUT(portl = WR2;
CALL delay(101;
OUTPUT(port) = NULL_VECTOR;

CALL TIME(10}j

OUTPUT(porti = RR2j
CALL delay(10);

IF (INPUT!portl AND VECTOR_MASK)
THEN

cdata.status = E$IOj

END i8274hnit;

$subtitle('i8274$setup')

/1
t TITLE: i8274$setup

f CALLING SEQUENCE:
I CALL i8274SsetupiudataSp);

f INTERFACE VARIABLES:

/f point to WR2 1/
II insure delay between OUTPUTs *1
1* null interrupt vector for RR2B Ii

/f point to RR2 1/
It insure delay between OUTPUTs II

<;:. 0

* udataSp POINTER to unit data
I

* CALLS:
* none

* ABSTRACT: * Initializes the baud rate generator to the configured
I rate, and sets up the 8274 for asychranaus ~Qde,
I d~vide by 16, B data bits, 1 st~p .
I bIt; parIty generatIon per confIguratIon.
II

B-26

134

135 2

136 2

137

138

139
140

141
147

143
144
145
146
147
148
149
150

2

2
"l ..

EXAMPLES OF DEVICE DRIVERS

i8274tsetup: PROCEDURE (udatafp) REENTRANT PUBLIC;

DECLARE
udatdp
udatapa STRUCTUI~E (

edata
udah

BASED
BASED

offset
base

udata$p:~o. base
udatafp

POINTER,

WORD
SELECTOR) AT(@udata$p),
TS$CDATA,
TS$UDATAj

DECLARE
i827Uinfofp
i8274$info BASED i8274Sinfotp

POINTER
i8274tCQNTROLLERtINFO;

DECLARE
eh_p
eh BASED ch_p

driveddata$p
driverfdata BASED

DECLARE
temp
port
out ({n,d
parftyhode
ti mer$type
rate$count
inirate
ouUrate
parity

STRUCTURE (
POINTER,

data_port
status port

POINTER,
STRUCTURE (

in port
~ (cmd_port
1n counter
in-freq
auf_part
out_cmd_port
aut counter
ou(freq

POINTER,
driverfdataSp STRUCTURE(

eh a$inSrate
ch-a$ouUrate
ch)Spari ty
eh bSin$rate
eh -bSout$rate
eh):f:pari ty

BYTE,
WORD,
BYTE
BYTE:
BYTE,
WORD,
WORD,
WORD,
BYTE;

i8?74$lnfo$p = edata.dinfc$p;
dr1verSdata$p = edata.drlverScdataSp;

IF udata.unitSnumber = 0 THEN
DO;

END'
~I r.l·
~ .. Jt

ch_p = @i8274$info.~h a_datd_portj
ch_rate_p = @i8274tlnto.ch_d_ln_rate_port;
timerStype = i8274$info.ch d_timer_type;
inSrate = driverSdata.ch afinfrate'
out'rate = driverSdata.cfi aSoutSrale;
parity = drivertdata.ch_dlparity;

B-27

WORD,
WORD l,

WORD,
WORD,
BYTE
DWORD,
WORD,
WORD,
BYTE
DWORDl,

WORD,
WORD,
BYTE,
WORD,
WORD!
BYTE! ;

151 3
152

.,.
,J

lC''' .,.
J') ,J

154 3
155 .,.

oJ

156 3
157

.,.

.J

158 2

/f
I

* 1/

159 2

160 2

161 3
162 3
163 4
164 4
165 4
16,S 3

167 4
168 4
169 4

170 3
171 3
172

.,.

... l

173 .,.
,J

174 3
f""t: .,.
if.J ,_l

176 .)

DO;

END;

EXAMPLES OF DEVICE DRIVERS

eh p = @i8274$info.ch b data port;
c~:rate_p = @ia274$~nfo;ch_b:ln_rate_port;
tllerftype = i8274$lnfo.ch b timer type;
in$rate = driver$data.eh_bfioSrate;
QutSrate = driverSdata.ch bSoutSrate;
parity = driverSdata.ch_bfp~rity;

out_cld = WR5~TX_ENABLE;

Initialize the input rate generator if the baud rate has changed, or
if a baud rate scan is in progr~ss, and if it's progralmable.

IF (in$rate <) udata.inSrate) AHD

DO;

(eh rate.in freq () 0) AND (udata.in$rate (> HARDNARESBAUDSSELECT)
THER -

IF udata.inSrate (= AUTQ$BAUDSSELECT THEN
DO;

rate$count = SHR(19200, (udata.inSrate-l}f3J;
out cmd = WR5 TX DISABLE;

END; - - -
ELSE
DO;

rateSeount = udata.in$rate;
in$rate = udata.inSrate:

END; ,

/f
f The initial timer value i5 the timer input frequency * divided by the configured baud rate.
*/

temp : FALSE;
IF (ch rate.in freq MOD rat!?'tCDunt) >= SHRlrateScount,ll THEN

temp = TRUtj
rateScount = (ch_~ate.in_ff~q ; rate$count);
IF tellp THEN

rate$count = rate$count + 1;

CALL setSbaudSrateSecuntleh_rate.in_cmd port,
ch .. rate.in_port,
timedtype,
ch rate.in counter,
rafe$cauntf;

177 3 END;

178 2

1',~ I, 2
180 .:1
181 3
182 4
183 4

184 4
185 4

!i
* initialize the output baud rate generator, if there is one, and it has
* changed, and it's programmable.
1/

IF (outfrate () udata.outSrate) AND

DO;

(eh rate.out freq () 0) AND (udata.DutSrate <) HARDWARE$BAUDSSELECT}
THEN -

IF udata.outSrate <) OUT.BAUDSSAME THEN
DO;

temp = FALSE;
IF (ch rate.out freq MOD udata.out$rate) }= SHR(udata.outSrate,l)

THEN -
temp = TRUE'

rate$CDunt = ICh_rale.out_freq ! udata.outSratel;

B-28

186 4
187 4
188 4

189 3

190

191 3

192 2
193 2
194 2

1'15 3

196 .j

197 .j

198 ":'
.j

199 2

200 2
201 2
202 " ~l

203 ":'
.J

204 3
205 3

206 " 'ol

207 ":'
.J

208
,.,
;;,

209 2
210 2

211 2

12
13
14
15

1*

EXAMPLES OF DEVICE DRIVERS

IF temp THEN
rate'count = rate$count + 1;

END;
out'rate = udata.out$rate;

/*

END;

f The initial timer value is the timer output frequency
f divided by the configured baud rate.
*/

CALL set$baud$rate$count(ch_rate.out_cmd port,
ch_rate.out_porf,
tillerftype,
ch rate. out counter,
rate$cQuntl;

* figure out the parity control part of the mode word,
*/

IF (udata.term$flags AND OUT$PAR!TY$MASK) = EVEN$OUTPUT$PARITY$MODE THEN
paritySmode = EVEN$MODE;

ELSE
DO;

IF (udata.term$flags AND OUT$PARITY$MASK) = ODD.OUiPUT$PARITY$MODE
THEN

parityiMode = ODD$MODE;
ELSE

parity$mode = NO$PARITY$MODEj

END;

port = ch,status_portj

if.
* If a new parity is specified, set up this 8274 channel accordingly.
II

IF parityhode <> parity THEN
DO;

parity = parity$ffiodej

OUTPUTiport) = WR4; If point to WR4 t/
CALL delay(lO}; if insure delay between OUTPUTs *1
OUTPUT(porti = WR4_INIT OR parity$mode;

CALL TIME (1 i)) ;
END;

OUiPUT(port).= WR5;
CALL del ay (10) ;
QUTPUT(port) = out_cmd;

CALL THIE(10);

OUTPUT(portl = WR3;
CALL delay (to);
OUTPUT(portl = WR3_INITj
CALL delay(l!));

B-29

If. point to WR5 +/
If insure delay between outputs */

1* point to WR3 */
It insure delay between outputs */

/* insure delay between outputs */

EXAMPLES OF DEVICE DRIVERS

If
f Throwaway any chars fro. baud rate search.
II

216 DO WHILE (INPUT(ch.status_port) AND RX_CHAR_RDYI () 0;
217 tenp = INPUT(ch.data_port);
218 CALL delay(10); 1* insure delay between outputs fl
219 END;

220 2
221 2
222 2

223
.,
i.

224 2
225 .,

1.

226 2

'1'17
J..J.r 2

228

229 2

230 .,
...

If
f If the 8274 is ready for output, tell the terminal support
I to send a char.
II

CALL delay(101; If insure delay between outputs fl
IF (INPUT(ch.status port) AND TX_BUFFER EMPTY) (> 0 THEN

CALL xtsSset$ou{put$wai~ing(udataSpr;

!f
fAllow Tx and Rx interrupts now.
il

CALL delayll0);
OUTPUTlport) = WRl;
CALL delay(10);
OUTPUTlport} = WRl_INITj

END i8274:Ssetup;

$subtitle('i8274fcheck')

/f
f TITLE: i8274Scheck ..
* CALLS:
.. none ..
I: INTERFACE YARIABLES:

1* insure delay between outputs */
If point to WRI fl

1* insure delay between outputs fl

* cdatafp POINTER to controller data

f CALLIN6 SEQUENCE:
f ch = i8274$check(cdata$p);
I:

f ABSTRACT:
I: TermScheck procedure, connected to 8274 input interrupt.
I:
f

Gets input char, strips off parity if required, and sets
up flags for terminal support.

i827Hcheck: PROCEDURE(cdata$pl BYTE REENTRANT PUBLIC;

DECLARE
cdata$p
cdata BASED cdata$p

DECLARE

POINTER 1 TS$CDATA;

iB274SinfoSp
i8274$info BASED
udatafp
udatapo

i827Hinfo$p
POINTER.1
i8274tCuNTROLLERtINFO,
POINTER,

STRUCTURE (

udata BASED

offset WORD
base SELECTOR) AT (@udata$p),

udata$p TS$UDAiA;

B-30

231 2

232 2

233 2

234 2
?7C'
.. ·.'oJ 2
236 2
237 2

238 .., ...

239 2
240 3
241 .j

242 3

243 L
244 " i.

245 3
246 7

... '
247 ':'

--'
248 .j

249 2

250 .j

251
'iC:"l 7
.... .JJ

253 3

254 2
"lC'e' ..,
",J..J ...

256 2

EXAMPLES OF DEVICE DRIVERS

DECLARE
ch_p POINTER,
ch BASED eh_p STRUCTURE (

data_port WORD,
status port WORD I~

ch rate ~ - POINTE ,
ch=rate - ASED eh rate p STRUCTURE (

- -in port WORD,
in -cld ~ort NORD,
in-cou~ er BYTE

d in-freq DNOR ,
Quf_port WORD,
out_cmd_port WORD,
out_counter BYTE

d out_freq OWOR I;

DECLARE

If ..
*1

/-'t

unit BYTE
vector BYTE'
dummy BYTE'
found$rate BYTE'
i WORD:
char BYTE;

i8274$info$p : edata.dinfo$p;

find out what caused the interrupt by reading RR2B

OUTPUTli8274'info.ch_b_status_portl : 002H;
CALL delay(5)L If insure delay between outputs II
vector: INPUt (i8274$info.ch b status port);
CALL deiay(20}j - - 1* insure delay between outputs *1

IF ((vector AND NO INT VECT) : NO INT VECT) AND
((INPUT(i8274$i~fc.fh_a_status=pcrf) AND INT_PENDINSI : 0) THEN

DO;

END;

cldata.interruptltype : NO$INTERRUPTi
RETURN char;

IF (vector AND 10Hl : lOH THEN
DO;

eh p : @i8274Sinfo.ch a data port;
eM-rate p = @i8274$info~ch a-in rate port;
cSaata.interruptingSunit :-Oi - -

ENDi .
ELSt
DO;

eh p : @i8274Sinfo.ch b data port;
eh-rate p : @i8274$info~ch b-ln rate port;
cSaata.interruptinglunit :-li - -

END; .

* Set up ~data$p to point to th~ interrupting un~ts. data.
f (that IS, add 1024 to the painter for each unIt)
.. I •• J

udataSp : @cdata.udata o

udatapo.offset : udatapo.offset + .
SHl(DOUBLE(cdata.interrupting$unitl,lO);

vector: (SHR(vector,21 AND 03Hlj

B-31

257 " '-
258 2
259 .,.

J

260 3
261 3
262 3

263 2
264 2

265 3

266
..,
J

267 3
268 4
269 4
270 4
271 4

""'? LI_ 5
'"17'" c-... ..} .J

274 5
,,~C'

.:.i.J 6
'7' ... 0 6
277 6

278 7
279 7

280 8
281 8
282 8
283 8
284 8
285 8
286 8
287 8
288 8
289 8
290 8
291 a
292 8
293 8
294 8
295 i

296 8
297 8
298 9
299 9
30(1 9
301 8

EXAMPLES OF DEVICE DRIVERS

/f
+ Modify the vector so that Special Rx Condition interrupts
• are handled in the Rx Char. Available case.
+/

IF vector = 3 THEN
DO;

vector = 2;
OUTPUT(ch.statu5 port) = ERROR RESET;
CALL delay(2lj - - It insure delay between outputs */

END;

IF vector = 2 THEN
DO;

1* Rx Char. available *1

char = INPUT(ch.data_port);

/f
f If in auto baud rate search, check character for
* an identifiable baud rate
*1

IF udata.in$rate (= AUTO$BAUDSSELECT THEN
DO;

char = char AND 07FH;
IF (char = 55Hi THEN'

foundSrate = 0::
ELSE '
DO;

IF char = 66H -HEN
foundSrate = 1:

ELSE '
DO;

IF char = 78H THEN
foundSrate = 2:

ELSE '
DO;

IF ch,ar = (I THEN
DO;
If'

f Go to next baud rate range and
* condition terminal support to call setup * in about 150 ms.
*/

udata.inSrate = udata.inSrate + 1:
IF ~data.in$rate > AUTO$BAUD$SELECr THEN

udata.in$rate = if
ourpUTlch.status port. = WR1;
CALL delayllO); 7* insure delay between outputs *1
OU~PUT(ch.status port) = WRI NO RX INT;
CALL delay(10}~ 7* insure delay-between outputs 1/
cdata.interrupt$type = DELAYSINTERRUPT;
DUTPUT(ch.status port) = WR3;
CALL delay(10); 7* insure delay between outputs *1
DUTPUTlch.statu5 port) = WR3 RX DISABLE;
CAl.L delay(10)j 7+ insure defay-between'uutputs 1:/
it CALL TIME(10)i f/
OUYPUTli8274$info,ch a status port) = END OF [NT;
RETURN char; - - - - - '

END' '
ELS~
DO;

IF udata.in$rate () 3 THEN
DO:;

~~~!t 
tul: 

cdata.interruptStype = MORES INTERRUPT; 
RETURN chari 

B-32 



302 9 
303 q 
304 9 
305 q 
306 9 
307 q 
308 9 
309 9 
310 9 
311 9 

312 9 
313 9 
314 9 
315 8 
316 7 
317 6 
318 r: 

J 

319 4 
320 4 
321 4 
322 4 .,.,.., 
.Ji..J 4 
324 4 
325 4 
326 4 
327 4 
328 4 

329 4 
.330 4 
331 4 

332 .~: 

~"'f" ':' 
.j .• \.~: '.' 
.334 4 
..,..,C' 
.J~\.J 4 .... , 

4 ·)·)b 

337 5 
33:3 5 
339 6 
340 6 
341 '" 

342 6 
343 7 
344 7 
345 7 
346 7 
347 7 
348 7 
349 7 
350 6 
351 5 

if. 

EXAMPLES OF DEVICE DRIVERS 

END; 

DO; 

END; 
END; 

END' 
I:NO' ' .. , 

udata.in$rate = 110; 
DUTPUT(ch.status port) = WR1; 
CALL delay(lO); 7* insure delay between outputs ., 
OUTPUT(ch.status port) = WRI NO RX INT~ 
CALL delay(10)~ 7* insure deray-be[wee~ outputs i/ 
cdata.interruptftype = DElAYSINTERRUPT~ 
DUTPUTlch.status port) = WR3' . 
CALL delay(10); 7* insure deiay between outputs *1 
QUTPUT(ch.status port) = WR3 RX DISABLE; 
CALL delayll0); 7* insure delay-between Dutputs */ 
1* CALL TIME(iO); *1 
OUTPUTli8274$infe.ch_a_status_portl = END_OF_INT; 
RETURN char; 

Ii 

END; 

i Calculate recognized baud rate 
*1 

udah.in!rate = SHR(192()0, (udata.inkate-1) f 3 + foundfrate}j 
DUTPUTlch.status port) = WRI' 
CALL delay(10); 7* insure delay between outputs */ 
DUTPUTlch,status port) = WRI NO_RX INT; 
CALL delay(10); 7* insure delay befween outputs II 
cdata.interruptftype = DELAYS INTERRUPT; 
OUTPUTlch.status port) = WR3' 
CALL delayllO); 7* insure deiay between outputs *1 
OUTPUT(ch.st~tus pertl = WR3 RX_DISABLE; 
CALL delayllu); 7* lnsure de[ay between outputs II 
1* CALL TIME(10); *1 
OUTPUTli8274$info,ch_d_status_portl = END_OF_~NT; 
RETURN charj 

f check input parity mode & strip ~arity if desired 
*l 

IF (udata.termSflags AND INSPARITYSMASKI () PASSfINPUT$PARITV$MODE 
THEN 

DOj 
IF (udata.termSflags AND INSPARITYSMASK) = 

STRIPSINPUT$PARITY$MODE THEN 

ELSE 
Dn. 

'-If 

char = char AND 07fh; 

IF (udata,termSflags AND OUT$PARSCHECKI <) 0 THEN 
DO; 

OUTPUT Ich. status port I = RRI' If: poi nt to RRl *l 
CALL delay(3); 7* insure deiay between outputs II 
IF (input(ch.status_portl AND i8274SINPUTSERRORI () 0 

THEN 
DO; 

END; 
END' 
ELSE 

char = char OR 080H; 
OUTPUTlch.status,port) = ERROR_RESET; I 

CALL delay(lO); 1* insure delay between outputs *1 
OUTPUTlch.status portl = WR3; 
CALL delay(10); 7* insure delay between outputs *1 
OUTPUT(ch.status_port) = WR3_INIT; 

B-33 



352 6 

353 6 
354 7 
355 7 
356 7 
357 7 
358 7 

359 7 
360 6 

361 7 
362 7 
363 "'/ 

1 

364 7 
365 7 

366 7 
367 6 
368 5 
369 4 

370 .3 

371 
.,. 
.J 

""7? -.l ... 3 
373 ., 

L 

374 
.,. 
J .,..,eo .,. 

J/J .J 

376 4 
377 4 
378 4 
379 4 

380 4 
381 :.\ 

382 4 
383 4 
384 4 
385 4 

386 4 
.387 .~I 

388 2 

389 2 

END' 
ELSE 
DOi 

EXAMPLES OF DEVICE DRIVERS 

END; 
END; 

DO; 
IF (udata.terl$flags AND INSPARITYSMASKI = 

EYENIINPUT$PARITY$MODE THEN 
DO; 

END' 
ELSE 
DO; 

END; 
ENDj 

dUlluy = 0; 
char = char OR dummy; 
I F PAR lTY THEN 

char = char AND 07FH; 
ELSE 

char = char OR 080Hj 

dumny = OJ 
char = char OR dUllY; 
IF NOT PARITY THEN 

char = char AND 07FHj 
ELSE 

char = char DR OBOHj 

OUTPUT (i 8274h nfo. ch_a_status_port) = END _OF JNTj 

cdata.interruptStype = INPUTSINTERRUPT; 

IF vector = 0 THEN 
DO; 1* h Buffer empty :fi 

END' 
ELS~ 

OUTPUT!ch.status_portl = RESET_TX_INT; 
CALL delay(S)j if insure delay between outputs *1 
cdata. interruputyp!! = OUTPUHINTH:RUPTj 
OUTPUTli8274$info.ch_a_status_portl = END OF INT; 

DO; 1* Ext/Status Change *1 

OUTPUT(ch.status por·t) = RESET EXT INT; 
cdata.interruptSlype = MORE$INTERRDPT; 
CALL delav(S}j 1* insure delay between outputs *1 
OUTPUT(i827Hinfo.ch3_status_port) = END OF INT; 

END; 1* E}:tlStatus Chanqe f./ 
END; 

F:ETURN char; 

END i8274$check; 

B-34 



EXAMPLES OF DEVICE DRIVERS 

$subtitle('i8274Sanswer'j 

1* 
* TITLE: i8274hnswer 
* 
f CALLIN6 SEQUENCE: 
* CALL iB274hnswer{udata$pJj 
f 
* INTERFACE VARIABLES: 
*' udata$p pon~TER to uni t data .. 
* CALLS: 
.. none .. 
* ABSTRACT: 
f. Sends a «rode word to the 8274 to place OTR active. 

* *1 

390 i8274hnswer: PROCEDURE{udata$p) REENTRANT PUBLICj 

391 

392 2 

393 2 

394 
,., 
..:. 

395 2 
396 2 
397 2 

398 2 
399 2 
400 2 

401 2 

DECLARE 
udatafp 
udata$p$o STRUCTURE( 

POINTER, 

cdata 
udata 

DECLARE 

BASED 
BASED 

offset WORD 
base SELECTOR} AT(@udata$p), 

udata$p$o.base TS$CDATA, 
udata$p TS$UDATAj 

i 8274$i nfo$p POINTER 
i8274$info BASED iB274$infc$p i8274$CONTROLLER$INFO; 

DECLARE 
ch_p 

STRUCTURE ( 
POINTER, 

ch BASED ch_p 
data_port WORD, 
status_port WORD )j 

i8274$infoip = cdata.dinfo$p; 

IF udata.unit$number = 0 THEN 
ch p = @i8274$info.ch_d_data_port; 

ELSE -
ch_p = @i8274$info.ch_b_data_port; 

QUTPUT(ch.status port) = WR5j 
CALL delay(10); - 1* insure delay between outputs *1 
OUTPUT(ch.status_port) = WR5_DTR_ONj 

END i8274$answer; 

B-35 



EXAMPLES OF DEVICE DRIVERS 

$subtitle('i8274:Shangup') 

/1 
* TITLE: i8274$hangup 
f 

* CALLING SEQUENCE: 
+ CALL i8274$hangup(udata:Sp)j 
f 

* INTERFACE VARIABLES: * udata$p POINTER to unit data 
f 

* CALLS: 
f none 
* f ABSTRACT: 
I Sends a mode word to the 8274 to place DTR inactive. 
f 
f/ 

402 i82741hangup: PROCEDURE(udatafp) REENTRANT PUBLICj 

403 2 

404 2 

405 2 

406 2 

407 2 
408 2 

409 2 

410 2 
411 2 
412 2 

413 2 

DECLARE 
udata$p 
udata:Sp:So STRUCTURE ( 

data 
udata 

BASED 
BASED 

offset 
base 

udatdp$o.base 
udata$p 

DECLARE 
i8274:hnfofp 
i827Uinfo BASED i 827 4Si nf o$p 

DECLARE 
ch_p 
ch BASED ch_p STRUCTURE ( 

POINTER, 

WORD 
SELECTOR} AT(@udata:Sp), 

TS$CDATA 
TS:SUDATA; 

POINTER1 i8274$CuNTROLLER:SINFOj 

POINTER, 

data_port WORD, 
status_port WORD I; 

i8274$info:Sp = cdata.dinfo:Sp; 

IF udata.unit$number = 0 THEN 
ch_p = U827Uinfo.ch_a_data_porti 

ELSE 
ch_p = @i8274~info.ch_b_data_pDrt; 

DUTPUT(ch.status_partl = WR5; 
CALL delay(10); 1* insure delay between outputs fl 
OUTPUT(ch.status_portl = WRS_DTR_OFF; 

END i82741hangup; 

B-36 



EXAMPLES OF DEVICE DRIVERS 

$subtitle('i8274$out') 

/f 
f TITLE: i8274$out .. 
.. CALLING SEQUENCE: 
f CALL iB274$out(udata$p,charl; 
of 
f INTERFACE VARIABLES: 
.. udata$p POINTER to unit data 
of char BYTE to OUTPUT .. 
of CALLS: 
• none .. 
f ABSTRACT: 
.. OUTPUTs a char to selected channel of the 8274. 
.. Marking or spacing parity is handled here if enabled, 
.. and the char is sent out. 
* +1 

414 i8274$out: PROCEDURE!udata$p,char} PUBLIC REENTRANT; 

415 2 

416 "l .. 

417 2 

418 .. 

419 2 

420 2 
421 'i .. 

422 2 

4?":O '1 ... ..) i.. 

424 2 
J3.'"IC' 
,i....J '., 
426 3 
4'7 .,. .. , ._i 

428 .j 

429 .,. 
.j 

430 '"I 
1.. 

431 2 

DECLARE 
udata$p 
udata$p$o STRUCTURE ( 

cdata 
udata 

BASED 
BASED 

offset 
base 

udai:dp$o.base 
udata$p 

DECU\RE 
i827Hinfo$p 
i827Hinfo BASED i827Hinfo$p 

DECL!~RE 
ch_p 
eh BASED ch_p STRUCTURE ( 

POINTER, 

WORD 
SELECTOR) AT(@udata$pl, 

TSSCDATA, 
TS$UDATA; 

POINTER 
i8274$CONTROLLERtINFOj 

POINTH: , 

data_port WORD, 
status_port WORD ); 

DECLARE 
char 
mode 

B'v'TI: 
, ''"' WORD; 

i8274$in+oSp = cdata.dinfo$p; 

IF udata.unitSnumber = 0 THEN 
ch_p = @i8274$info.ch_a_data_port; 

ELSE 
ch_p = @i8274$info.ch_b_data_port; 

mode = udata.termSflags AND QUTSPARrTYSMASK; 
IF mode (= MARKSOUTPUTfPARITYSMODE THEN 
DO; 

END; 

IF mode = MARKSOUTPUTSPARITYSMODE THEN 
char = char OR 80H; 

ELSE 
char = char AND 07FH; 

OUTPUT(ch.data_portl = char; 

END i8274$outj 

B-37 



EXAMPLES OF DEVICE DRIVERS 

$subtitle('i8274$finish') 

1* 
f TITLE: i8274$finish 
*' * CALLING SEQUENCE: 
f CALL i8274$finish(cdata$pl; 
f 
f INTERFACE VARIABLES: * cdata$p - pointer to controller data. 
I 

I CALLS: 
f none 

* * ABSTHACT: 
f Procedure disables TX, RX and interrupts. 
* +1 

432 i8274$finish: PROCEDURE !cdata$pl PUBLIC REENTRANT; 

433 2 

434 2 

435 2 

436 2 

437 2 

438 '1 
i.. 

439 2 
440 " 

f. 

441 2 
442 2 
443 2 

444 '.., i.. 

445 ! 

446 2 

447 .., 
i.. 

448 2 
449 2 
45(1 'I 

i.. 

451 " 

i.. 

4~? " 

"' .. 
453 2 

454 2 
455 2 
456 2 

457 2 

458 

DECLARE 
cdata$p 
cdata BASED cdata$p 

DECLARE 
i8274iinfo$p 
i8274$info BASED i8274$info$p 

DECLARE 
port 

if: 
f Get the configur~tion info 
II 

i8274$info$p = cdata.(info$p; 

1* 

POINTER J TS$CDATHj 

POINiEF: 
i8274$CdNTROLLER$INFOj 

WORD; 

f Disable the 8274 TX, RX, and interrupts. 
*1 

OUTPUT(portl = WR5; 
CALL del ay (101 ; 
aUTPUT(portl = WR5 TX DISABLE; 
CALL delay(10); --

QUTPUT(portl = WR3; 
CALL delav\lO); 
OUTPUT(port) ='wR3_RX_DISABLE; 
CALL delay!101; 

OUTPUT(port! = WR1; 
CALL del,~y(10); 
OUTPUT(pcrti = WRl NO INT; 
CALL delay(10); 

DUTPUT(portl = WR5; 
CALL delay(10lj 
DUTPUT(portl = WRS_TX_DISABLEj 
CALL delay(lOlj 

DUTPUT(portJ = WR3j 
CALL delay(lO); 
OUTPUT(port) = WR3_RX_DISABLE; 
CALL delay(10); 

OUTPUT(port) = WR1; 
CALL delay(lO)j 
OUTPUT(fortl = WRI NO INTi 
CALL de ay(lOlj - -

END i8274ifinishj 

END >:8274; 
B-38 

1* paint to WR5 II 
If insure delay between outputs I! 
/f disable Ix 
/f insure delay between outputs '1 

1* point to WR3 II 
1* insure delay between outputs fl 
if disable Rx 
/1 insure delay between outputs If 

1* point to WRI II 
1* insure delay between outputs fl 
1* disable interrupts 
1* insure delay between outputs 1/ 

!f point to WR5 1/ 
1* insure delay between outputs II 
1* disable Ix 
1* insure delay between outputs II 

1* point to WR3 */ 
II Insure delay between outputs II 
If disable Rx 
1* insure delay between outputs *1 

If point to WRl II 
1* Insure delay between outputs +1 
If disable interrupts 
Ii insure delay between outputs il 



EXAMPLES OF DEVICE DRIVERS 
MODULE INFORMATION: 

CODE AREA SIZE = 0943H 2371D 
CONSTANT AREA SIZE = OOOOH OD 
VARIABLE AREA SIZE = OOOOH OD 
MAXIMUM STACK SIZE = 0030H 48D 
1394 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

DICTIONARY SUMMARY: 

96KB MEMORY AVAILABLE 
22KB MEMORY USED (22%) 
OKB DISK SPACE USED 

END OF PL/M-B6 COMPILATION 
It: 

f xB255.1 it 
* 
f 8255 is programmed as follows: 
* f Group A: Mode 1 
* Group B: Mode 0 
f. 

f Port A and Lower Port C: OUTPUT 
* Port B and Upper Port C: INPUT 
f 

• Port C definition (bit 0 is LSBj bit 7 is MSB): 
I 
f Bit 0 
* 1 
* 2 
f 3 
* 4 
* 5 
I 6 
f 7 
1/ 
DEC~ARE 

MODE$WORD 
CHARSACK$COMPLETE 
PRINTER$READY 
PAPER$OUT 
CHAR:SACK 
INUENABLE 
INUDISABLE 
STROBE$ON 
STROBE$OFF 

1* 
f. ~:prntr,lit 

* 

Character strobe to the printer 
not used 
not used 
Character acknowledge from the printer is complete 
Printer ready 
Paper out 
Pn nter interrupt enab 1 e 
Character acknowledge from the printer 

LITERALLY 
LITERALLY 
LITERALLY 
LITERALL Y 
LITERALLY 
LITERALL Y 
L.ITERALLY 
LITERALLY 
LITERALLY 

'OAAH' , 
'OSH' , 
'tOH', 
'20H' 
'BOH' : 
'ODH' , 
'OCH' , 
'01H' , 
'OOH' ; 

I Common device driver 
.. information 

f. 1 evel: 
* priority: 
f stacUsize: 
* data$size: 
f. num$units: 
* device$init: 
-I; deviceSfinish: 
f. device$start: 
f. device!stop: 
* deviceSinterrupt: 
1/ 

Interrupt level 
Priority of interrupt task 
Stack size for interrupt task 
Device local data size 
Number of units on device 
Init device procedure 
Finished with device procedure 
Start device procedure 
Stop device procedure 
Device interrupt procedure 

DECLARE COMMONSDEVSINFO LITERALLY 
level 
priority 
stack$slze 
data$size 
nudunits 
device$init 
deviceSfinish 
devi ce$start 
device$stop 
device$interrupt 

WORD, 
BYTE, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD' ; B-39 



EXAMPLES OF DEVICE DRIVERS 

DECLARE i8255$INFO LITERALLY 
A$port WORD, 
Bfport WORD, 
C$p~rt WORD, 
Controlfport WORD ; 

DECLARE 
PRINTER$DEVICESINFO LITERALLY 'STRUCTURE( 

CO~"ONSDEVSINFO, 
i8255SINFO, 
tabScontrol HORD}'; 

$save nolist 
If 

f x206dv.Ii t 
f Defines literals for 206 driver 
* */ 

If 
f The iopb fields (first 9 bytes) must be first~~ 
.. They are used later and the other procedures 
.. do not knoH of status or restore. 
* 
f Note that each spindle has up to 4 platters, and each 206 can support 
* up to 4 spindles. Thus, there are 4 statuses: one for each spindle. 
f 

f Restore is used to indicate that there is a restore in progress. 
* It is set when a restore is started after a request returns an 
f error which requires a restore to reset the drive. A new request 
* is not started when there is a restore in progress, instead the 
.. interrupt routine starts the request and resets restore when 
.. the restore finishes. 
1./ 

DECLARE 

/f 

IO$PARM$BLOCK!206 
. t In ... er 
instr 
r$count 
cvl$add 
red add 
bufHp 
sbtus(4) 
restore 
formaUtable(72) 

.. defines flasks 

DECLARE 

/f 

i nter$onhask 
i nter$offhask 
FORMATHRACnON 
i206tTRACUMAX 
i206$SECTOR$MAX 
cOlll:1land$busy 

.. defines op-codes 
fl 

DECLARE 
no$op 
seek$op 
formaUop 
restorefop 
read$op 
verif-y$op 
write$op 

LITERALLY 'STRUCTURE! 
BYTE, 
BYTE, 
BYTE, 
BYTE, 
BYTE 
POINtER, 
BYTE, 
BYTE, 
BYTE) 'j 

LITERALLY '008H", /+ bit 4 := 16-bit data I! 
LITERALLY 'OlaH', 
LITERALLY '040H", 
LITERALLY '600', 1* 400 tracks f 2 surfaces 1/ 
LITERALLY '36', 
LITERALLY '080H'; 

LITERALLY 'OOH' '" 
LITERALLY 'OlH', 
LI TERALL Y '0 2H' , 
LITERALLY '03H', 
L I TERALL Y '04H' I 

L I TERALL Y '05H', 
LI TERALL Y '06H' j 

B-40 



EXAMPLES OF DEVICE DRIVERS 

If 
f defines ports 
*1 

declare 
sub:Ssysbdport 
resultStype$port 
controller$stat 
resulUbyte$port 
interfstaUport 
diskSconfig$port 
lo$seg$port 
hi$seg$port 
lo$offSport 
hi$ClfHport 
starUdiagnostic 
reseUport 

$restore 

$save 001i51: 

1* 
f. x206in.lit 

* 206 Driver info 

LITERALLV 'base', 
LITERALLY 'base + I', 
LITERALLV 'basI? + 2', 
LITERALLY 'base + 3', 
LITERALLY 'base + 4', 
LITERALLY 'base + 7', 
LITERALLY 'base', 
LITERALLY 'base', 
LITERALLY 'base + 1', 
LITERALLY 'base + 2', 
LITERALLY 'base + 5', 
LITERALLY 'dinfo.base + 7'; 

f Adds to the device$info and unitSinfo structtires, 
* using camman device support and random access 
f device support • .. 
i! 

1* 
f. Per device information 
*i 

1* 

DECLARE 
1206$DEVICE$INFO LITERALLY 'STRUCTURE( 

RADEVSDEVrCES[NFO, 
base WORD) '; 

f Per unit information 
*i 

DECLARE 
I206SUNIT$INFO LITERALLY 'STRUCTURE(RAOSUNITSINFOI '; 

$restore 

$save ilolist 
;:~ 

t x206dc.ext 
II 

send$206$iopb: PROCEDURE (base, iopbSp) BOOLEAN EXTERNAL; 
DECLARE 

base WORD 
iopb$p POINtER; 

END send$206$iopb; 

$restore 

B-41 



$save nolist 

/1 
• x206dp.e:-:t 
1/ 

EXAMPLES OF DEVICE DRIVERS 

i 0:$206: PROCEDURE (base, i OfS'P, dui b$II, i opb$p) EXTERNAL i 
DECLARE 

base WORD 
iors$p POINtER, 
duib$p POINTER, 
iopb$p POINTER; 

END iof206; 

$restore 

$save nolist 

II 
• x206fm. ext 
II 

forlat$2Q6: PROCEDURE 
DECLARE 

base 
iors$p 
duib$p 
iopb$p 

(base, iors$p, duib$p, iopb$p) EXTERNAL; 

END fortnaU206; 

$restore 

$SAVE NGLIST 

II 
• nsl eep. ext 
II 

WORD 
POINtER, 
POINTER, 
POINTER; 

rq$sleep: PROCEDURE! timeflilit, 
excepUptr ) EXTERNAl.; 

DECLARE ti,eflimit WORD, 
exceptSptr POINTER; 

END rq$sleep; 

tRESTORE 

$save nolist 
If 
* ;{collon.l it 
10ft-used literals. 
* 
f./ 

DECLARE 
BOOLEAN 
TRUE 
FALSE 
FOREVER 
PTR$OVERLAY 
P$OVERLAY 
STRING 

LITERALLY 'BYTE', 
LITERALLY 'OFFH', 
LITERALLY 'OOOH', 
LITERALLY 'WHILE mUE', 
LITERALLY 'STRUCTURE(offset WORD, base TOKEN}', 
LITERALLY 'STRUCTURE(offset WORD, base WORD)' 
LITERALLY 'STRUCTUREllength BYTE, char(1) BYT~)', 

B-42 



EXAMPLES OF DEVICE DRIVERS 

1* 

*1 

$restore 

DWORD 

NO$TI ME$U 11 IT 
BYTE$MAX 
WORDSMAX 
FIFO$Q 
PRIOfQ 

SSAVE NOLIST 

If 
f xdelay.ext 
*1 

If: 

LITERALLY 'POINTER', 

LITERALLY 'OFFFFH', 
LITERALLY , OFFH' 
LITERALLY 'OFFFFH', 
LITERALLY 'OOOH', 
LITERALLY '001H'; 

* External Declaration for Delay Procedure. 
*1 

delay: PROCEDURE(units) EXTERNAL; 

DECLARE 
units 

END delay; 

$restore 

$save nolist 
1* * ;~drinf.lit 

BYTE; 

1* select FIFO queueing f/ 
1* select PRIO queueing *1 

f Driver information for common and random access devices • 
.. 
f.! 

/f 
* Random-access driver 
* .. level: 
* pr i or ity: * stackSsize: 
.. data$size: 
of num$units: 
* device$init: * deviceHi ni sh: 
.. devi ceSstart: 
* deviceSstop: 
f deviceSinterrupt: 
fi 

DECLARE 

information 

Interrupt level 
Priority of interrupt task 
Stack size for interrupt task 
Device local data size 
Number of units on device 
Init device procedure 
Finished with device procedure 
Start device procedure 
Stop device procedure 
DeVice interrupt procedure 

RADEVSDEVICESINFO LITERALLY 
'level WORD, 
priority BYTE, 
stackSslze WORD, 
dataSsize WORD, 
num$units WORD, 
tievice$init WORD, 
deviceSfinish WORD, 
devlceSstart WORD, 
device$stop WORD, 
deviceSinterrupt WORD'; 

B-43 



EXAMPLES OF DEVICE DRIVERS 

/+ 
f Unit info for radev 
f 

f trad$size: 
* f 

* max$retry: 
*1 

DECLARE 

Size in bytes of track. Used for calculating 
track/sector. Requests to device ~ill not cross 
track boundaries. 
NUlber of tiles to retry an a 50ft 10 error. 

RAD$UNIT$INFO LITERALLY 
'track$size WORD, 
max!retry WORD, 
cylinderSsize WORD; 

$restore 

$save nolist 
1* 

·f x dui b.I it 
f Device-Unit 
f 

*1 

/-f 
f nalle: 
·f fi le$dri ver: 
.. 
t funds: 
.. flags: 
* ·f de'v$gran: 
f. dev$size: 
*' device: 
f unit: 
·f 

t dev$unit: 
f. 

f. iniUio: 
f. finish$io: 
.. queue$io: 
f cancel$io: 
of. device$infafp: 
*' uniUinfQ$p: 
f. updateStilleout: 
f. r:um$buffers: 
f. orioritv: 
* fi xed$update: 
f madbuffers: 
f fill: 
*/ 

DECLARE 

Inforllation Block definition. 

ASCII name of dev-unit, null padded 
biUil ==} file-driver (i+ll 1S ok for this device. 
See idevllg.pIIi 
from EPS, tit i ==) functianli) supported by the driver. 
For 215 only. See EPS • 
functions are F$FJRMAT, F!READ, etc. 
device granularity in bytes. 
size (in bvtes) of device-unit 
device number/device code 
device specific nJmber of controller sub-unit (i.e" 
for a 204, could be 0,1 to indicate different drives) 
unique number identlfying a device/unit pair for device 
allocation purposes 
driver procedure for initializing driver 
driver procedure For turning off/deallacating driver 
driver procedure for queueing 110 requests 
driver procedure for cancellIng I/O requests 
device specific i,formation pOlnter. 
unit specific information painter. 
time (ticks) before update on this unit 
number of deblocking/buffering buffers far this unit 
service task priority. 
boolean to indicate use of wall clock updates. 
maximum no. of buffers for device (used by EIOS) 
filler byte 

DUIBSPARTSONE LITERALLY 
'name(DEVSNAMESLENI BYTE, 
fileSdriver WORD, 
functs BYTE, 
flags BYTE, 
~ev~~~!n WORD h ~ev$~l~e DWOR~, 
device BYTE, 
unit BYTE, 
dev$unit WORD I 

B-44 



EXAMPLES OF DEVICE DRIVERS 

DUIB$PART$TWO LITERALLY 
'init$io WORD, 
finish$io WORD, 
queueSio WORD, 
cancelfio NORD 
device$info$p POINtER, 
unit$info$p POINTER, 
updateStimeout WORD, 
numfbuffers WORD, 
priority BYTE, 
fixed$update BYTE, 
max$buffers BYTE, 
fill BYTE' 

DEVSUNITSINFO.BLOCK LITERALLY 'STRUCTURE! 
DUIBSPARHONE 
DUIB$PART:HWO/' ; 

DECLARE 
VHAUTO 
YF$DENSITY 
VFfSIDES 
VF$MINI 

LITERALLY '1', 
LITERALLY '2', 
LITERALLY '4' I 
LI TERALL Y , 8' ; 

$restore 

$save nolist 
if 

*' >:excep.lit 
f 110 System Exception Code Mnemonics. 
*i 

Sinclude(:fl:xnerro.lit} 

/* 
*' IDS Synchronous Avoidable exception codes. 
*f 

DECLARE 
E$NOUSER 
E$NOPREFIX 

/f 

LITERALLY '08021H'. 
LITERALLY '08022H'i 

f IDS Asynchronous exception codes. 
*i 

DECLARE 

1* 

E$FEX 1ST 
OFNEX 1ST 
E$DEVFD 
E$SUPPORT 
E$EMPTHENTRY 
E$DIRSEND 
E$FACCESS 
HFTYPE 
E!SHARE 
E$SPACE 
ESIDDR 
£$10 
E$FLUSHING 
E$ILLVOL 
E$DEV$OFFSL!NE 
£$IFDR 

LITERALLY '00020H', 
LITERALLY '00021H', 
LITERALLY '00022H', 
LITERALLY '00023H', 
LITERALLY '00024H', 
LITERALLY '00025H', 
LITERALLY '00026H' 
LITERALLY '00027H': 
LITERALLY '00028H', 
LITERALLY '00029H', 
LITERALLY '0002AH', 
LITERALLY '0002BH' 
LITERALLY '0002CH': 
LITERALLY '0002DH', 
LITERALLY '0002EH', 
LITERALLY '0002FH'; 

f. E$IO expanded with unitstatus codes 
II 

B-45 

1* Job has no Default User Object ~/ 
1* Job has no Default Prefix Object il 

If File Exists II 
1* Non-existant File *1 
/f Device & File Driver Incompatable I! 
1* Un-supported Request *1 
1* Empty Directory Entry f! 
/* End of Directory fl 
It Access to File Not Granted *1 
/1 Bad File Type II 
/t Improper File Sharing Requested 1/ 
1* No Space Left I! 
/t Illegal Device Driver Request II 
i* I/O Error II 
II Connection is flushing requests tl 
1* Illegal Volume *i 
if Device Was Off Line 'I 
/1 Illegal File Driver Request *1 



EXAMPLES OF DEVICE DRIVERS 

DECLARE 
E$IO$UNCLASS 
HIO$SOFT 
E$IO$HARD 
HIO$OPRINT 
EfIOfWRPROT 
E$IO$NOSDATA 
ESIOSNODE 

LITERALLY '00050K', 
LITERAllY '00051H', 
LITERALLY '00052H', 
LITERALLY '00053H', 
LITERAllY '00054H' 
LITERALLY '0005SH': 
lITERALLY '00056H'; 

$restore 

$save nolist 

if 
*' xi oey. c • 1 it 
*1 

If 
• 10 exception codes 
*/ 

DECLARE 
IO$UNCLASS 
IQ$SOFT 
IO$HARD 
IOtOPRINT 
IOSWRPROT 
IOSNOtDATA 
IO$MODE 

!restore 

tsave nalist 
i* 

f. :-:iofcLlit 

LI TERAll Y '0', 
LITERAllY '1', 
LI TERAll Y '2', 
L ITER All Y , 3 ' , 
LITERALLY '4', 
LI TERAlL Y '5', 
LITERALLY '6'; 

f 10 function codes 
f. 

f/ 

DECLARE 
F$READ LITERALLY '0', 
C$WRfTE LITERALLY 'I', 
FSSEEK LITERALLY '2', 
F$SPECIAL LITERALLY '3', 
F$ATTACH$OEV LITERALLY '4', 
F$DETACH$DEV LITERALLY '5', 
FSOPEN LITERAllY '6', 
FSCLOSE LITERAllY '7', 
FtGETCS LITERALLY'S', 
FSGETFS LITERALLY '9', 
FSGETEXT LITERALLY '10' I 

FSSETEXT L!TERALLY '11' 
FSNULLSCHSACCESS LITERALLY '12 t

, 
F$NUlL$DElETE LITERALLY '13', 
FSRENAME LITERALLY '14', 
F$GETSPATHfCOMP LITERALLY '15', 
F$GET$DIR$ENTRY LITERALLY '16', 
F$TRUNC LITERALLY '17', 
F$DETACH LITERALLY '18', 
FiNUMSFJNCT LITERALLY '19'; 

B-46 

/f Unclassified */ 
/1 Soft error 1/ 
If Hard error *1 
/1 Operator intervention required 1/ 
If Write protected *1 
/f No further data 1/ 
/1 Mode violation */ 



EXAMPLES OF DEVICE DRIVERS 

1* 
f Function codes for internal use only. * The rq$colllllonhttach and cO.I·on$io$task use FSATTACHtTHRU. 
f The reqSupdate and cOI.onSioStask use FSUPDATE. 
*1 

DECLARE 
FiATTACHSTHRU LITERALLY '19' 
F$UPDATE LITERALLY '20'; 

$restore 

$save nolist 
1* * xiotvp.lit 

f 'RHX/86 110 System "typeS literals. 
* 
*1 

DECLARE 
CONNECTION LITERALLY 'TOKEN' 
USER LITERALLY 'TOKEN" 
BLOCK$NU~ LITERALLY '(3) BytE'; 

$restore 

$save nolist 
1* 

f xiors.lit 
f 110 Request/Result Segment 
* *1 

DECLARE 

1* 

!ORSSPARTSONE LITERALLY 
'status WORD, 
unitistatus WORD, 
actual WORD, 
actualifill WORD, 
device WORD, 
unit BYTE, 
funct BYTE, 
subfunct WORD 
de~$IQc DWORO~ 
butfSp POINTtR'1 

IGRS$PART$TWO LITERALLY 
'count WORD, 
cQ.unt$fill WORD t aux$p POIN ER, 
link$for POINTER, 
link$back POINTER, 
respSlbox MAILBOX, 
done BOOLEAN, 
iOfsSfill BYTE 
canceliid TOKEN, 
connst TOKEN , 

IOSREQiRES$SES LITERALLY 'STRUCTURE ( 
IORSiPARHONE, 
! ORSSPARHTWO) , i 

I Define number of actual bytes of data (i.e., before links) 
II 

DECLARE 
IORSSDATASSIZE LITERALLY '30'; 

B-47 



EXAMPLES OF DEVICE DRIVERS 

$include(:fl:xiofct.litl 
$restore 

$save nolist 

If 
f xnoti f. ext 
* 
f External for notify support p~ocedure 
* Called by randol access supp6rted drivers 
fl 

notify: PROCEDURE(unit, jdatatp} EXTERNAL; 
DECLARE 

unit BYTE 
ddata$p POINtER; 

END noti fy; 

$restore 

$save nolist 

1* 
f xnerro.lit 
*1 

DECLARE 
E$OK 
E$TIME 
E$MEM 
E$BUSY 
E$L!MIT 
E$CONiEXT 
ESEXIST 
E$STATE 
ESNOTSCONFIGURED 

DECLARE 
E$ZERO$DrVIDE 
ESOVERFLOW 
EHYPE 
aBOUNDS 
ESPARAM 
E$BAD$CALL 

LITERALLY 'OOOOOH', 
LITERALLY 'OOOOlH', 
LITERALLY '00002H', 
LITERAllY '00003H', 
LITERALLY '00004H', 
LITERALLY '00005H', 
LITERALLY '00006H', 
LITERALLY '00007H', 
LITERALLY '00008H'; 

LITERALLY '08000H', 
LITERALLY '08001H', 
LITERALLY '08002H', 
L.I TERALL Y '08003H', 
LITERALLY '08004H', 
LITERALLY '08005H'; 

·$restore 

$save nolist 
If 
* xnutvp.lit 
f 'RMX/86 Nuclells II t"f'pe II 1 i terals. 
* f:! 

DECLARE 
TOKEN 
SEGMENT 
TASK 
REGION 
SEMAPHORE 
MAILBOX 
JOB 
EXTENSION 

DECLARE 
UMAILBOX 
HSEGMENT 

$restore 

LITERALLY 'SELECTOR', 
LITERALLY 'TOKEN', 
LITERALLY 'TOKEN', 
LI TEIMLL Y 'TOKEN' ~ 
LITERALLY 'TOKEN'; 
LITERALLY 'TOKEN', 
LITERALLY 'TOKEN', 
LITERALLY 'TOKEN'; 

LITEi~ALLY '03H', 
LITEHALLY '06H'; 

B-48 



EXAMPLES OF DEVICE DRIVERS 

$save nolist 
/f 

I xparam.lit 
f I/O Systet parameter literals. 
* 
1/ 

DECLARE 
DEV$NAMESLEN LITERALLY '14', !f device name is 14 bytes II 
PATHSCOMP$lEN LITERALLY '14', If path component size *1 
UPSCOMP LITERALLY" 'A"', /f "up" component character */ 
PATH$SEP LITERALLY' "~I' ", /* path component seperator character */ 
DEFSPREFIXSCHAR LITERALLY' "S' "; /i default-prefix character */ 

DECLARE 
ATTfDEV$TASK$STACK$SIZE LITERALLY '512' 
CONN$JOB$DELETESTASK$STACKSSIZE LITERALLY '512': 
TIMERSTASKSSTACK$SIZE LITERALLY '512', 
COMMONSDRIVER$STACK$SIZE LITERALLY '512'; 

DECLARE 
IOS$OS$EXTENSION LITERALLY '192'; 

DECLARE 
XFACE$Q$LEN LITERALLY '(Sf2)', 
CONNSDELSQ$LEN LITERALLY' (SI2) '; 

:f:restore 

$save nolist 

1* * t.prerr.lit 
1/ 

If. 
f. errOf codes 
*1 

DECLARE 
EIOK LITERALLY 'OOOOH', 
ESIDDR LITERALLY '002AH'; 

Srestore 

$save nolist 

It 
f >:trsec.lit 
f/ 

DECLARE TRACKSSECTORSSTRUCT LITERALLY 'STRUCTURE! 
sector WORD 
track WORDl'; 

$restore . 

tsave nol i st 

if. 
f. xtsscw.ext 
1/ 

xts$set$output$waiting: PROCEDURE(udata$pl EXTERNAL; 
DECLARE 
. udata$p POINTER; 

END xts$set$output$waitingj 

$restore 

B-49 

1* OS extension vector t/ 

If xface mbox queue length = 5t4*/ 
i* conn job-del mbox queue length = 5*4 1/ 



EXAMPLES OF DEVICE DRIVERS 

SSAVE NOLIST 

/f 
f xtstill.ext 
f/ 

if 
I External Declaration 
f for tiler support procedure. 
1/ 

setSbaudSrate$count: PROCEDURE (command_port , counter port, timer_type, 
counter_number, rate_count} tXTERNAL; 

DECLARE 
(c~mland_port, counter_port, rate_count) WORD, 
(tImer_type, counter _number) BYTE; 

END set$baud$rateScountj 

SRESTORE 

$save noli st 
/f 

I xradsf.lit 
f RandOl-Access driver Special-Function ~nelonics. 
f 
II 

DECLARE 
FS$FOR~ATfTRACK LITERALLY '0'; If format a track *1 

If 
f Format info structure to forlat one track on 
* a disk(hard Dr floppyi 
f used by 204 & 206 drivers 
* *1 

DECLARE 

if 

FORMATSINFOfSTRUCT 
track$null 
track$interleave 
trackSskew 
filUchar 

LITERALLY 'STRUCTURE! 
WORD, 
WORO, 

~~~l~J '; 
f Device label special function. Asks driver to supply
f device information for named file label.
f
II

DECLARE
FS$DEVICESLABEL LITERAL!. Y , 3' j

/f
I Special tape functions.
* *1

DECLARE

Srestore

FSfREWIND LITERALLY '7',
FS'READ$FILE.~ARK LITERALLY '8',
FSSWRITE$FILESMARK LITERALLY '9'
FSSRETENSION LITERALLY '10 1

;

B-50

Primary references are underscored.

assembly language iii, 8-1
attach device requests 4-1

baud rate 7-16, 7-19
BEGIN$LONG$TERM$OP procedure 5-8
buffered devices 7-17, 7-25
buffers 2-6, 2-7 --

CANCEL$IO procedure 2-5, 3-3, 6-4, A-6
cancel requests 4-2
close requests 4-2
common device driver 1-3, 5-1

device information tabl~3-8
example B-2
support routines A-I, B-55

common device 3-1
comnunication levels 1-1
configuration 2-1, 8-1
connection 2-16
creating DUIBs 2-8
custom device drivers 1-3, 6-1
custom devices 3-2
cylinder 3-11

data storage area 3-9, 3-13
data. structures 3-7, 3-12-
DEFAULT$FINISH procedure 5-3
DEFAULT$INIT procedure 5-2
DEFAULT$STOP procedure 5-5
detach device requests 4-2
device

buffered 7-17, 7-25
granularity 2-4
interfaces 2-13
number 1-2, 2-5, 2-11

device data StOrage area 3-9, 3-13, A-3, A-9
device driver

interfaces 2-1
sample INCLUDE files B-55
type 1-3

DEVICE$FINISH procedure 3-10, 5-2
Device Information Table 2-5, 3-8, 7-3, 7-27
DEVICE$INIT procedure 3-10, 5-Z-­
DEVICE$INTERRUPT procedure 3-10, 5-5
DEVICE$START procedure 3-10, 5-3--

DE~vice Drivers Index-l

INDEX

INDEX (continued)

DEVICE$STOP procedure 3--10, 5-4
device-unit information block (DUIB) 2-2

creation 2-8
structure 2-2
use of 2-7, 4-3

device-unit
name 2-3
number 1-2, 2-5

doubly linked list 6-5
driver configuration 8-1
DQ$ATTACH system call 2--3, 3-4
DQ$CREATE system call 2-3, 3-4
DUIB, see: device-unit information block

END$LONG$TERM$OP procedure 5-9
examples of device drivers B-1

device driver INCLUDE files B-55
disk controller driver B-8
printer driver B-2
terminal driver B-29

file connection 2-16
file drivers 1-2, 2-3
FINISH$IO procedure~5, 3-2, 3-10, 6-2, A-3
fixed updating 2-6
FORHAT command 5-11
functions 2-3, 2-11

GET$IORS procedure 5-10
granularity 2-4, 2--7--

1206DS.P86 disk-controller driver source file B-8
INIT$IO procedure 2-5, 3-2, A-I, A-9
Intel-supplied routines 5-1
Interactive Configuration Utility (ICU) 8-1
interfaces to the device driver 2-1
interrupt

handlers and tasks 3-3
level 3-8, 7-5
task A-3
task priority 3-9
type 7-13, 7-22

INTERRUPT$TASK procedure 3-3, A-9
I/O functions 2-3
I/O request/result segment (IORS) 1-3, 2-9, A-5, A-7, A-II

structure 2-9
use of 4-3

I/O requests 1-3, 4-1
I/O System interfaces 2-1
I/O System responses 4-1
I/O System-supplied routines 5-1
IPRNTR.P86 printer driver source file B-2

levels of communication 1-1
linked list 6-5

Device Drivers Index-2

long-term operations 5-8

modem 7-8

name of device-unit 2-2
notify procedure 2-14, ~~
numhering of devices 1-2

open requests 4-2

parity 7-7

INDEX (continued)

PL/M-86 iii, 5-11, 8-1
portable device drivers 3-14
priority 3-9

QUEUE$ 10 procedure 2-5, 3--3, 6-3, A- 5

RAD$ procedure-name prefix (jRHX 88 systems onlv) 3-2, A-I
random access device drivers 1-3, 5-1
random access devices 3-1
random access driver example B-8
read requests 4-2
request queue 6-5
requests 1-3, 4-1
requireme.nts for using the common devicE~ driver 3-1
retry limit 3-11
RQAPHYSICAL$ATTACH$DEVICE system call 2-3, 3-4, 3-5, 6-4, A-I
RQ$ELVL system call A-9
RQ$FORMAT system call 5-11
RQSETINTERRUPT system call A-9

SEEK$COMPLETE procedure 3--11, 5-7
seek requests 4-2
set output waiting (XTSSETOUTPUT$WAITING) procedure 7-18, 7-24
signal character 2-15
source files, device drivers B-1
special requests 4-2
stack size 3-9
support (INCUDE) files B-55

tape drives 2-14, 5-8
rewinding of 5-8

terminal
attributes 2-15
baud rate 7-16, 7-19
Device Information Tahle 2-5, 3-8, 7-3, 7-27
devices 3-3
driver example B-29
drivers 7-1
flags 7-8, 7-14
modem 7-8
parity 7-7

terminal answer (TERM$ANSHER) procedure 7-17, 7-20, 7-27
terminal check (TERM$CHECK) procedure 7'-17, 7-22, 7-27

Device Drivers Index-3

INDEX (continued)

terminal controller data 7-14, 7-27
terminal flnish (TERl1$FINISH) procedure 7-17, 7-19, 7-27
terminal hangup (TERM$tIANGUP) procedure 7-17, 7-21, 7-27
terminal initialization (TERM$INIT) proct~dure 7-17, 7-18, 7-27
termlnal output (TERM$OUT) procedure 7-17, 7-24, 7-2-7-­
terminal setup (TERM$SETUP) procedure 7--17, 7-19, 7-27
Terminal Support Code 7-11
terminal 11nit data 7-4, 7-14, 7-27
track size 3-11
types of device drivers 1-3

Unit Information Table 2-5, 3-10, 7-6
unit number 1-2, 2-5, 2-11
unit status codes 2-10
updating output to a device 2-6
us ing DlTIBs 2-7

volume granularity 2-7

write requests 4-2

X8274.P86 terminal driver source file B-29
XTSSETOUTPUT$HAITING procedure 7-24

Device Drivers Tndex-4

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	8-01
	8-02
	8-03
	8-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	B-41
	B-42
	B-43
	B-44
	B-45
	B-46
	B-47
	B-48
	B-49
	B-50
	idx01
	idx02
	idx03
	idx04

