GUIDE TO WRITING DEVICE DRIVERS
FOR THE iRMX™ 86 AND iRMX™ 88
1/0 SYSTEMS

CONTENTS

CHAPTER 1

INTRODUCTION

I/O Devices and Device DriverSeecesesesccescsssscescssscscssosscsnsns 1
I/O Requests.....................'.....ll'.......................... 1-
Types of Device DriverSesesesesecsccscocosseccsscesessncssncssncsoses 1
How to Read This Manuadleeeseseesescsesscecscsscsesecsccscscscssosnscssae 1

CHAPTER 2

DEVICE DRIVER INTERFACES
I/O System InterfaceSeesecscccsessceassccsccsosnsncsscsscccscsccosssssnse 2-1
Device-Unit Information Block (DUIB)Q».oo-oooooooooooo..a.o..ooo. 2-2
DUIB StrTuUCLUTECeessessesssssacsesssssnoscssscsscsacscsscscsssscsonss 2-2
Using the DUIBSceecessescesssecssscoocssesscscscscscscssscsssoncsace 2-7
Creating DUTBSeesesseccesessencesososessssasscsssscscsascsssnsosscse 2-8
I/O Request/Result SEgment (IORS)..o.ooooo-oooo-o.ooooooooooooooo 2=-9
2-1

Device InterfaceSeecsececcscnsesccsascsonsscnssssssscsscsssnsacsnse

CHAPTER 3

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Categories Of DeviceSeeesccsacesscsssssoscscsscscccsccnsccsccssscsnsne 3-1
Common DevicCeSessecssesssencossssecscsnsscessscsssssssssscsssscssnsssse 3-1
Random Access DevicCeSeessesseeecsscscoscesssssssssscsessscsnssssccsce 3-1
Terminal DeviceSeseeescsssscecccsccscncessssesncscsossoncssncscsoncs 3-2
Custom DeviceSesessesnccovsocssesccsssscsscsscsscsconscssssossasosasne 3-2

I/0 System-Supplied Routines for Common and Random Access
Device DriverSecesessccsescecsesscsscncsssanscenscsscscsscsssccscacce 3-2

I/0 System Algorithm For Calling the Device Driver ProcedureSeeeeces 3=4

Required Data StruCtUYESesesoessssescsscsssscsscsssncssassssscsssoce 3-7
Device Information Tableeesesececoecensscsssccscscossscessnssossoncs 3-8
Unit Information Tablesessocecescecocevscscnsncosnncsosscscsnssscss 3-10
Relationships Between I/0 Procedures and I/0 Data StructureSesees 3-12

Device Data Storage N o 2 T 3-13

Writing Drivers For Use With Both iRMX" 86— and iRMX" 88-Based

SYStEmSooooocooootooooooon-ooc.ocoooooooouoo.ooo-oooooo.ooobooooo 3-14

CHAPTER 4
I/0 REQUESTS
I/0 System Responses to I/0 RequeStSeecsvecssccessscscsscsasccssscss 4-1
Attach Device RequestSeeceossescssssscsocsscnscsscsccsscscsscnsensce 4-1
Detach Device RequestSeecesesvecssessssvcssssnessesscscsssnsscsssccsssosn 42
Read, Write, Open, Close, SGEk, and Special REQUEStS.n.ooooocoooo 4-2
4-2
4-3

Cancel Requests.............-........o-......-o................o.

DUIB and IORS Fields Used By Device DriverSessescsecsssvssccccoscssne

Device Drivers iii

CONTENTS
(continued)

CHAPTER 5
WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS
Introduction to Procedures that Device Drivers Must SupplVeececesanssee
Device Initialization Procedure€eeessesssscecssssccscscsccnccccccans
Device Finish Procedureececescsccccceescescccesasasscsnscsscssascscnes
Device Start ProcedurCececssccscascscscsnssscssecscscsssscscnscssccsossecs
Device StOD procedureooo-ocoo'o-oooo.wo-oooooo.-oo.o.noocoo.oocoo.-
Device Interrupt ProcediiTCesecssccesesrasenssssssscsssssccccssssscass
Procedures that iRMX" 86 Random Access Drivers Must Calleeesscecsces
NOTIFY ProceduUrCecsccesessccccccsncsonoscscossscsonscsnsssssscssnsses
SEEKsCOMPLETE PrOCEdUre.o.oooooooonmoooooo.o-o-oooooo.ooo.oo-onoo
Procedures for Other Long—Term OperatioNSecesscscscsceccscncscssssce
BEGINsLONGSTERMsOP ProcedurCeecessesccecescscersoccccscccsscsas
ENDSLONG$TERMSOP ProcedurCeeceesserescsscescccsconccssscssencences
GETsIORS ProcedirCeenscsccccscsscesncencsssssescssncscosossancncses
Formatting ConsiderationSessencecssccnencsnscssceccscsccsssesscossanss

CHAPTER 6

WRITING A CUSTOM DEVICE DRIVER

Initialize I/O ProcedurCeeecessscsescnessssoscsacsccssscsosossscssssscs
Finish I/O ProcedurEecncessesessscososvscstssssccsncsssesessssssnssoscse
Queue I/0 Procedureeesccssscesscsascsnssssssssssscssasscssnscsssssse
Cancel I/O Procedureesssescesccsvessenssososcccscsossnsacsasssnssnccs
Implementing a RequesSt OUEUCesssessscnscssscossssnscssnssncsssscccas

CHAPTER 7

TERMINAL DRIVERS

Terminal Support CodEevessssssscccscsnscsscsacncsasssnsncsssssascssnone

Data Structures Supporting Terminal I/Oeececcesccceccccssceccsssscss
DUIB......'...'.‘...Q.l....ll...l.........‘.........'I...........
Device Information Table...........,...................--........
Unit Information Table.-n.o.-o-.a-omco..oco-oo-oooao.oooo-.ooo-oo
Terminal Controller Data and Terminal Unit Dataeesecsceccescccsccse

Terminal Support Code (TSC) Data ATCAseccocsescccssoncsssscssssssse

Procedures that Terminal Drivers Must SuPPlVeececcecccssesccscscccssse
Terminal Initialization Procedur@eacecscccscscscsssncsscssonscncne
Terminal Finish PrOCEdUTEOQc.ooo.oooooo‘oooooooo.ooooooo'oocoo-oo
Terminal Setup ProcedurCeecsscssseccsssccssccscesocsscsvsssoncssss
Terminal Answer ProcedurEecsscecssscsscscscncsscncsscsesncsccsoncscsss
Terminal Hangup ProcedurCececsssssccescecsencsscssnsscncsssessscsnnse
Terminal Check Procedure-.-.........-.............-.............o
Terminal Output ProcedurCecscsasecssscecsscccssensseccscssssnncncns
Additional Information for Buffered DeviceSeescsccssncsccscnscnae

Procedures' Use of Data StTrUCLUTESesscescessccssccsoscasssvcncssccnace

CHAPTER 8

BINDING A DEVICE DRIVER TO THE I/0 SYSTEM

Using the iRMX" 86 Interactive Coofiguration UtilitVe.eeesceccescscses
Using the iRMX™ 88 Interactive Configuration UtilitVeeessesscssessee

Device Drivers iv

PAGE

T I A |
— O

oo Unan Y!U1U1U1U1U\U
= OO0 XN PWNN

8-1
8-4

CONTENTS
(continued)

PAGE

APPENDIX A

RANDOM ACCESS DRIVER SUPPORT ROUTINES

INITSIO ProcCedUre.eceeessseccscesoccascnasescssscsssossnessacsssnsscnsss A-1
FINISHSIO ProcCedUre.cceeescessssescasocasasssossossnscsssssscsnnssancss A-3
QUEUESIO ProcCedUr@.ceecececesesssescasasnscoasoscsssssscsssssssanscsescs A-5
CANCELSTIO ProcCedUre.ceeeeccesessscscssosssoscssssassansssossocasscasss A-6
Interrupt Task (INTERRUPTSTASK)eeeeeoceonosososassccssonnsssassocss A-9

APPENDIX B
EXAMPLES OF DEVICE DRIVERS ¢.eeceesescosrsoccossssssossssossssscecsacss B-1

FIGURES

Communication LevelS.ceseeceeroecsccasosesccsccscsosnssssoocs
Device NUumbering.eceeeoeeeeecccsccecoescacososscosccscsoscssnss
Attaching DeviceS.iceeserssessssesscansesscscanssscscasossassos
Interrupt Task InteractionN.esccecesesccescccecsccscasscsonse
How the I/O System Calls the Device Driver ProcedureS......
DUIBs, Device and Unit Information TableS.eeeeececscscsscsse
Relationships Between I/0 Procedures and I/0 Data

.

ww(.iows—w—
NSO N -

wwwulomn—nl-d
SN =N =
.

SErUCEUYCS eeeesesosacscssssesscosnssossscosssssascscsansacsassass 3-12
6-1. Request QUEUEC. . eestesearososssssssssssasssosscssssosssssssnsnsocs 6-6
7-1, Software Layers Supporting Terminal I/0...ceeeeecccssscccss 7-2
7-2. TSC DAtl@ ArCAceeeeccesasscsassossossosasesossassassssossorsososacss 7-12
8-1. Example IDEVCF,A86 Fil@.eeeeoosssaceasseasossscasossnssossans 8-2
8-2. Example User DevicCes SCreeN.isccecseccscrsccssosssssssssscncss 8-4
A-1., Random Access Device Driver Initialize I/O Procedure....... A-2
A-2. Random Access Device Driver Finish I/0 Procedure....ceceeeee A=4
A-3. Random Access Device Driver Queue I/0 Procedur€...eeeeesess A-6
A-4, Random Access Device Driver Cancel I/0 Procedur€..ceeececsss A-8
A-5., Random Access Device Driver Interrupt Task..ieesecseescesss A-10

TABLES
4-1, DUIB and IORS Fields Used by Common Device Drivers....cece. 4=4
4-2, DUIB and IORS Fields Used by Random Access Device Drivers.. 4-5
4-6
7-2

4-3, DUIB and IORS Fields Used by Custom Device DriversS.cesecess
7-1, Uses of Fields in Terminal Driver Data StructureS...eceeecse

ek

Device Drivers v

CHAPTER 1
INTRODUCTION

The iRMX 86 and iRMX 88 I/0 Systems are each implemented as a set of file

drivers and a set of device drivers. File drivers provide the support
for particular types of files (for example, the named file driver
provides the support for named files). Device drivers provide the
support for particular devices (for example, an iSBC 215 device driver
provides the facilities that enable you to use an iSBC 215 Generic
Winchester controller to control a Winchester-type drive with the I/0
System). Each type of file has its own file driver, and each device has
its own device driver.

One of the reasons that the I/0O Systems are broken up in this manner is

to provide device-independent I/0. Application tasks communicate with
file drivers, not with device drivers. This allows tasks to manipulate

all files in the same manner, regardless of the devices on which the
files reside. File drivers, in turn, communicate with device drivers,
which provide the instructions necessary to manipulate physical devices.
Figure 1-1 shows these levels of communication.

APPLICATION TASK

file independent interface

FILE DRIVER

device independent interface

DEVICE DRIVER

DEVICE

x-290

Figure 1-1. Communication Levels

Device Drivers 1-1

INTRODUCTION

The I/0 System provides a standard interface between file drivers and
device drivers. To a file driver, a device is merely a standard block of

data in a table. To manipulate a device,

the file driver calls the

device driver procedures listed in the table. To a device driver, all

file drivers seem the same.

Every file driver calls device drivers in

the same manner. This means that the device driver does not need to

concern itself with the concept of a file driver.

It sees itself as

being called by the I/0 System, and it returns information to the I/0

System. This standard interface has the following advantages:

e The hardware configuration can change without extensive
modifications to the software.

Instead of modifying entire file

drivers when you want to change devices, you need only substitute
a different device driver and modify the table.

° The I/0 System can support a greater range of devices.

It can

support any device, as long as you supply a device driver that

interfaces to the file drivers in

I/0 DEVICES AND DEVICE DRIVERS

Fach 1/0 device consists of a controller and one or more units.
as a whole is identified by a unique device number.
by unit number and by device—unit number.

the standard manner.

A device

Units are identified

The device number identifies

the controller among all the controllers in the system, the unit number
identifies the unit within the device, and the unique device—unit number

identifies the unit among all the units of all of the devices.

Figure

1-2 contains a simplified drawing of three IL/0 devices and their device,
unit, and device—unit numbers.

DEVICE 0 DEVICE 1 DEVICE 2
CONTROLLER CONTROLLER CONTROLLER
UNIT 0 UNIT 1 UNIT O UNIT 1 UNIT 2 UNIT 0
DEVICE- DEVICE- DEVICE- DEVICE- DEVICE- DEVICE-
UNIT 0 UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5

Figure 1-2.

Device Numbering

x-291

Device Drivers 1-2

INTRODUCTION

You must provide a device driver for every device in your hardware
configuration. That device driver must handle the I/0 requests for all
of the units the device supports. Different devices can use different
device drivers; or if they are the same kind of device, they can share
the same device driver code. (For example, two iSBC 215 controllers are
two separate devices and each has its own device driver. However, these
device drivers can share common code.)

1/0 REQUESTS

To the device driver, an I/0 request is a request by the I/0 System for
the device to perform a certain operation. Operations supported by the
I/0 System are:

Read

Write

Seek

Special
Attach device
Detach device
Open

Close

The I/0 System makes an 1/0 request by sending to the device driver an
I1/0 request/result segment (IORS) containing the necessary information.
(The IORS is described in Chapter 2.) The device driver must translate
this request into specific device commands to cause the device to perform
the requested operation.

TYPES OF DEVICE DRIVERS

The I/0 System supports four types of device drivers: custom, common,
random access, and terminal. A custom device driver is one that the user
creates in its entirety. This type of device driver can assume any form
and can provide any functions that the user wishes, as long as the I/0
System can access it by calling four procedures, designated as Initiallze
I/0, Finish I/0, Queue I/0, and Cancel I/0.

The I/0 System provides the basic support routines for the common, random
access, and terminal device driver types. These support routines provide
a queueing mechanism, an interrupt handler, and other features needed by
common, random access, and terminal devices. If your device fits into
the common, random access, or terminal device classification, you need to
write only the specialized, device-dependent procedures and interface
them to the ones provided by the I/0 System to create a complete device
driver.

Device Drivers 1-3

INTRODUCTION

HOW TO READ THIS MANUAL

This manual 1is for people who plan to write device drivers for use with
iRMX 86~ and/or iRMX 88-based systems. Because there are numerous
terminology differences between the two iRMX systems, the tone of this
manual is general, unlike that of other manuals for either system. For
iRMX 88 users, this should not be a problem. But iRMX 86 users should
take note of the following:

° In a number of places the phrase "the location of" is substituted
for "a token for".

° The "device data storage area" that is alluded to in many places
is actually an iRMX 86 segment.

e The term "resources" usually means "objects." The intended
meaning of "resources™ 1s clear from its context.

ke

Device Drivers 1-4

CHAPTER 2
DEVICE DRIVER INTERFACES

Because a device driver is a collection of software routines that manages
a device at a basic level, it must transform general instructions from

the I/0 System into device-specific instructions which it then sends to
the device itself. Thus, a device driver has two types of interfaces:

] An interface to the I/O System, which is the same for all device
drivers.

e An interface to the device itself, which varies according to
device.

This chapter discusses these interfaces.

I/0 SYSTEM INTERFACES

The interface between the device driver and the I/0 System consists of
two data structures: the device-unit information block (DUIB) and the I/0
request/result segment (IORS).

DEVICE-UNIT INFORMATION BLOCK (DUIB)

The DUIB is an interface between a device driver and the I/0 System, in
the sense that the DUIB contains the addresses of one of the following
routines:

. The device driver routines (in the case of custom device drivers).

° The device driver support routines (in the case of terminal
drivers, common drivers, and random access drivers).

By accessing the DUIB for a unit, the I/0 System can call the appropriate
device driver/device driver support routine. All devices, no matter how
diverse, use this standard interface to the I/0 System. You must provide
a DUIB for each device—unit in your hardware systems You supply the
information for your DUIBs as part of the configuration process.

Device Drivers 2-1

DEVICE DRIVER INTERFACES

DUIB Structure

This section lists the elements that make up a DUIB. When creating DUIBs
for iRMX 86 applications, code them in the format shown here (as
assembly~language structures). The iRMX 86 Interactive Configuration
Utility (ICU) includes your DIUIIB file in the assembly of IDEVCF.A86 (a
Basic I/0O System configuration file). IDEVCF.A86 contains the definition
of the structure.

Unlike the iRMX 86 ICU, the iRMX 88 ICU prompts you for some fields in
the DUIB structure. The ICU automatically fills in the other fields,
depending upon factors such as the type of device you are configuring.
The iRMX 88 ICU generates the DUIBs and places them in the device
configuration source file.

DEFINE DUIB <

& NAME (14), ; byte (14)

& FILESDRIVERS, ;5 word

& FUNCTS, ; byte

& FLAGS, ; byte

& DEVSGRAN, s word

& DEVSSIZE, s dword

& DEVICE, ; byte

& UNIT, ; byte

& DEVSUNIT, 3 word

& INITSIO, ; word

& FINISHSIO, ;s word

& QUEUESIO, s word

& CANCELSIO, ; word

& DEVICESINFOSP, ; pointer

& UNITSINFOSP, 3 pointer

& UPDATESTIMEOUT, ; word

& NUMSBUFFERS, ; word

& PRIORITY, ; byte

& FIXEDSUPDATE, ; byte (iRMX 86 DUIB only)
& MAXSBUFFERS, ; byte (iRMX 86 DUIR only)
& RESERVED, ; byte (iRMX 86 DUIB only)
& >

Device Drivers 2-2

where:

NAME

FILE$DRIVERS

FUNCTS

DEVICE DRIVER INTERFACES

A 14-BYTE array specifying the name of the DUIB.

This name uniquely identifies the device-unit to
the I/0 System. Use only the first 13 bytes. The
fourteenth is used by the I/0 System.

You supply the name when configuring your
application system. If you are an iRMX 86 user,
you specify the DUIB name when attaching a unit via
the RQAPHYSICALSATTACHSDEVICE system call.

Device drivers can ignore this field.

For the iRMX 88 Executive, the DUIB name is the
device name portion of the name$p parameter for the
DQ$ATTACH or the DQ$CREATE system calls.

WORD specifying file driver validity. Setting bit
number "i" of this word implies that the

corresponding file driver can attach this
device-unit. Clearing bit number "i" implies that

the file driver cannot attach this device-unit.

The low—-order bit is bit 0. The bits are
associated with the file drivers as follows:

Bit "i" File Driver
0 physical
1 stream (iRMX 86 only)
3 named

The remaining bits of the word must be set to
zero. Device drivers can ignore this field.

BYTE specifying the I/0 function validity for this

device-unit. Setting bit number "i" implies that
the device—unit supports the corresponding
function. Clearing bit number "i" implies that the
device-unit does not support the function. The

low—order bit is bit 0. The bits are associated
with the functions as follows:

Bit "i" Function

read

write
seek

special
attach device
detach device
open

close

No bk W= O

Bits 4 and 5 should always be set. Every device
driver requires these functions.

Device Drivers 2-3

FLAGS

DEV$GRAN

DEV3$SIZE

DEVICE

DEVICE DRIVER INTERFACES

This field is used for informational purposes

only. Setting or clearing bits in this field does
not limit the device driver from performing any 1/0
function. In fact, each device driver must be able
to support any I1/0 function, either by performing
the function or by returning a condition code
indicating the inability of the device to perform
that function. However, to provide accurate status
information, this field should indicate the
device's ability to perform the I/0 functions.
Device drivers can ignore this field.

BYTE specifying characteristics of diskette
devices. The significance of the bits is as
follows, with bit 0 being the low-order bit:

Bit Meaning
0 0 = bits 1-7 not significant
1 = bits 1-7 significant
1 0 = single density; 1 = double
density
2 0 = single sided; 1 = double
sided
3 0 = 8-inch diskettes
1 =5 1/4-inch diskettes

£
o
]

standard diskette, meaning
that track 0 is
single—~density with
128-byte sectors

1 = not a standard diskette or
not a diskette

5-7 reserved

If bit 0 is set to 1, then a driver for the device

can read track O when asked to do so by the I/0
System.

WORD specifying the device granularity, in bytes.
This parameter applies to random access devices.
It specifies the minimum number of bytes of
information that the device reads or writes in one
operation.If the device is a disk or magnetic
bubble device, you should set this field equal to

the sector size for the device. Otherwise, set
this field equal to zero.

DWORD specifying the number of bytes of information
that the device—unit can store.

BYTE specifying the device number of the device

with which this device—unit is associated. Device
drivers can ignore this field.

Device Drivers 2-4

UNIT

DEV$UNIT

INIT$IO

FINISH$IO

QUEUE$IO

CANCEL$I0

DEVICE$INFO$P

UNIT$INFOS$P

DEVICE DRIVER INTERFACES

BYTE specifying the unit number of this

device-unit. This distinguishes the unit from the
other units of the device.

WORD specifying the device—unit number. This
number distinguishes the device-unit from the other
units in the entire hardware system. Device
drivers can ignore this field.

WORD specifying the address of the Initialize 1/0
procedure associated with this unit. When creating
the DUIB, use the procedure name as a variable to

supply this information. Device drivers can ignore
this field.

WORD speclfying the address of the Finish I/0
procedure associated with this unit. When creating
the DUIB, use the procedure name as a variable to
supply this information. Device drivers can ignore
this fileld.

WORD specifying the address of the Queue I/0
procedure associated with this unit. When creating
the DUIB, use the procedure name as a variable to

supply this information. Device drivers can ignore
this field.

WORD specifying the address of the Cancel I1/0
procedure associated with this unit. When creating
the DUIB, use the procedure name as a variable to
supply this information. Device drivers can ignore
this field.

POINTER to a structure which contains additional
information about the device. The common, random
access, and terminal device drivers require, for
each device, a Device Information Table, in a
particular format.

This structure is described in Chapter 3. If you
are writing a custom driver, you can place
information in this structure depending on the
needs of your driver. Specify a zero for this

parameter if the associated device driver does not
use this field.

POINTER to a structure that contains additional
information about the unit. Random access and
terminal device drivers require this Unit
Information Table in a particular format. Refer to
Chapter 3 for further information. If you are
writing a custom device driver, place information
in this structure, depending on the needs of your
driver. Speclfy a zero for this parameter 1if the
associated device driver does not use this field.

Device Drivers 2-5

UPDATE$TIMEOUT

NUM$BUFFERS

PRIORITY

FIXED$UPDATE

DEVICE DRIVER INTERFACES

WORD specifying the number of system time units
that the I/0 System must wait before writing a
partial sector after processing a write request for
a disk device. In the case of drivers for devices
that are neither disk nor magnetic bubble devices,
set this field to OFFFFH during configuration.

This field applies only to the device for which
this is a DUIB, and is independent of updating that
is done either because of the value in the
FIXED$UPDATE field of the DUIB or by means of the
A$UPDATE system call of the I/0 System. Device
drivers can ignore this field.

WORD which, if not zero, both specifies that the
device is a random access device and indicates the
number of buffers the I/O System allocates. The
I/0 System uses these buffers to perform data
blocking and deblocking operations. That is, it
guarantees that data is read or written beginning
on sector boundaries. If you desire, the random
access support routines can also guarantee that no
data is written or read across track boundaries in
a single request (see the section on the Unit
Information Table in Chapter 3). A value of zero
indicates that the device 1is not a random access
device. Device drivers can ignore this field.

BYTE specifying the priority of the I/0 System
service task for the device. Device drivers can
ignore this field.

BYTE indicating whether the fixed update option was
selected for the device when the application system
was configured. This option, when selected, causes
the I/0 System to finish any write requests that
had not been finished earlier because less than a
full sector remained to be written. Fixed updates
are performed throughout the entire system whenever
a time interval (specified during configuration)
elapses. This is independent of the updating that
is indicated for a particular device (by the
UPDATE$TIMEOUT field of the DUIB) or the updating
of a particular device that is indicated by the
ASUPDATE system call of the I/0 System.

A value of OFFH indicates that fixed updating has

been selected for this device, and a value of zero
indicates that it has not been selected. Device
drivers can ignore this field.

The FIXED$UPDATE field is not present in the
iRMX 88 DUIB.

Device Drivers 2-6

DEVICE DRIVER INTERFACES

MAX$BUFFERS BY[E specifying the maximum number of buffers that
the Extended I/0 System (of the iRMX 86 Operating
System) can allocate for a connection to this
device when the connection is opened by a call to
S$OPEN. The value in this field is specified
during configuration. Device drivers can ignore
this field.

The MAX$BUFFERS field is not present in the iRMX 83
DUIB.

RESERVED BYTE reserved for future use.

The RESERVED field is not present in the iRMX 88
DUIB.

Using the DUIBs

To use the I/0 System to communicate with files on a device-unit, you
must first attach the unit. If you are an iRMX 88 user, attaching the
unit occurs automatically when you first attach or create a file on the
unit. If you are an iRMX 86 user, you attach the unit by invoking the
RQAPHYSICALSATTACH$DEVICE system call (refer to the iRMX 86 BASIC I/0
SYSTEM REFERENCE MANUAL for a description of this system call).

When you attach a unit, the 1I/0 System assumes that the device-unit
identified by the device name field of the DUIB has the characteristics
identified in the remainder of the DUIB. Thus, whenever the application
software makes an I/0 request via the connection to the attached
device-unit, the I/0 System ascertains the characteristics of that unit
by examining the associated DUIB. The I/O System looks at the DUIB and

calls the appropriate device driver/device driver support routines listed
there to process the I/0 request.

If you want the I/0 System to assume different characteristics at
different times for a particular device-unit, you can supply multiple
DUIBs, each containing identical device number, unit number, and
device-unit number parameters, but different DUIB name parameters. Then
you can select one of these DUIBs by specifying the appropriate dev$name
parameter in the RQAPHYSICALSATTACH$DEVICE system call (for iRMX 86
users) or the appropriate device name when calling DQ$ATTACH or DQ$CREATE
(for iRMX 88 users.) However, before you can switch the DUIBs for a
unit, you must detach the unit.

Figure 2-1 illustrates this concept. It shows six DUIBs, two for each of
three units of one device. The main difference within each pair of DUIBs
in this figure is the device granularity parameter, which is either 128

or 512. With this setup, a user can attach any unit of this device with
one of two device granularities., In Figure 2-1, units 0 and 1 are
attached with a granularity of 128 and unit 2 with a granularity of 512.
To change this, the user can detach the device and attach it again using
the other DUIB name.

Device Drivers 2-7

DEVICE DRIVER INTERFACES

NOTE

For iRMX 86 systems only, when the

1/0 System accesses a device containing
named files, it obtains information
such as granularity, density, size
(5-1/4" or 8" for diskettes), or the
number of sides (single or double) from
the volume label. Therefore it is not
necessary to supply a different DUIB
for every kind of volume you intend to
use. However, for iRMX 86
applications, you must supply a
separate DUIB for every kind of volume
you intend to format via the FORMAT
Human Interface command.

NAME = UNITA NAME = UNITA1
DEVSGRAN =128 DEV$GRAN =512

DUIBS FOR
DEVICE =1 DEVICE =1 DEVICE-UNIT 8
UNIT=0 UNIT=0
DEVSUNIT=6 DEVSUNIT = 6

3
1
CALLRQ$SASPHYSICALSATTACHSDEVICE (UNITA,...)
NAME = UNITB NAME = UNITB1
DEVS$GRAN =128 DEVS$GRAN =512
, DUIBS FOR
DEVICE =1 DEVICE =1 DEVICE-UNIT 7
UNIT =1 UNIT =1
DEVSUNIT =7 DEVSUNIT =7
t |
CALL RQSASPHYSICALSATTACHSDEVICE (UNITB,..)

NAME = UNITC NAME = UNITC1
DEVSGRAN =128 DEV$GRAN =512

DUIBS FOR
DEVICE =1 DEVICE =1 DEVICE-UNIT 8
UNIT =2 UNIT =2
DEVSUNIT=8 DEVSUNIT =B

CALL RQSASPHYSICALSATTACHSDEVICE (UNITC1,..)

Figure 2-1.

Attaching Devices

x-292

Creating DUIBs

During interactive configuration, you must provide the information for

all of the DUIBs.
up the DUIBs when it executes.

supplying DUIB information:

Device Drivers 2-8

The configuration file, which the ICU produces, sets
Observe the following guldelines when

DEVICE DRIVER INTERFACES

° Specify a unique name for every DUIB, even those that describe
the same device-unit.

° For every device—unit in the hardware configuration, provide
information for at least one DUIB. Because the DUIB contains the
addresses of the device driver/device driver support routines,
this guarantees that no device-unit is left without a device
driver to handle its I/0.

e Make sure to specify the same device driver/device driver support
procedures in all of the DUIBs associated with a particular
device. There is only one set of device driver/device driver
support routines for a given device, and each DUIB for that
device must specify this unique set of routines.

° If you write a common or random access device driver, you must

supply a Device Information Table for each device. If you write
a random access device driver, you must also supply a Unit

Information Table for each unit. See Chapter 4 for
specifications of these tables. If you are using custom device
drivers and they require these or similar tables, you must supply
them, as well.

e For iRMX 86 systems only, if you write a terminal driver, you

must supply terminal device information table for each terminal
device driver, as well as a unit information table for each

terminal. See Chapter 7 for specifications of these tables.

I/0 REQUEST/RESULT SEGMENT (IORS)

An I/0 request/result segment (IORS) is the second structure that forms
an interface between a device driver and the I/0O System. The I/O System
creates an IORS when a user requests an I/0 operation. The IORS contains
information about the request and about the unit on which the operation
is to be performed. The I/O System passes the IORS to the appropriate
device driver, which then processes the request. When the device driver
performs the operation indicated in the IORS, it must modify the IORS to
indicate what it hds done and send the IORS back to the response mailbox
(exchange) indicated in the IORS.

The IORS is the only mechanism that the I/0 System uses to transmit

requests to device drivers. The IORS structure is always the same.
Every device driver must be aware of this structure and must update the
information in the IORS after performing the requested function. The
IORS is structured as follows:

Device Drivers 2-9

DEVICE DRIVER INTERFACES

DECLARE

IORS STRUCTURE(
STATUS WORD,
UNIT$STATUS WORD,
ACTUAL WORD,
ACTUALSFILL WORD,
DEVICE WORD,
UNIT BYTE,
FUNCT BYTE,
SUBFUNCT WORD,
DEV$LOC DWORD,
BUFF$P POINTER,
COUNT WORD,
COUNT$FILL WORD,
AUX$P POINTER,
LINK$FOR POINTER,
LINK$BACK POINTER,
RESP$MBOX SELECTOR,
DONE BYTE,
FILL BYTE,
CANCELS$ID SELECTOR,
CONNS$T SELECTOR); (iRMX 86 IORS only)

where:

STATUS WORD in which the device driver must place the
condition code for the 1/0 operation. The E$OK
condition code indicates successful completion of the
operation. For a complete list of possible condition
codes, see either the iRMX 86 NUCLEUS REFERENCE
MANUAL, the iRMX 86 BASIC I/0 SYSTEM REFERENCE
MANUAL, and the iRMX 36 EXTENDED I/0 SYSTEM REFERENCE
MANUAL, or the iRMX 83 REFERENCE MANUAL.

UNIT$STATUS WORD in which the device driver must place additional

status information if the status parameter was set to
indicate the E$I0 condition. The unit status codes
and their descriptions are as follows:

Code Mnemonic Description

0 LO$UNCLASS Unclassified error

1 IO$SOFT Soft error; a retry is possible

2 IO$HARD Hard error; a retry is
impossible

3 IO$OPRINT Operator intervention is
required

4 IO$WRPROT Write-protected volume

5% IONODATA No data on the next tape record

6% IO$MODE A read (or write) was attempted

before the previous write (or
read) completed

*For iRMX 86 systems only.

Device Drivers 2-10

ACTUAL

ACTUALS$FILL

DEVICE

UNIT

FUNCT

SUBFUNCT

DEVICE DRIVER INTERFACES

The I/0 System reserves values 0 through 3 (the least
significant four bits) of this field for unit status
codes. The high 12 bits of this field can be used
for any other purpose that you wish. For example,
the iSBC 204 driver places the controller's result
byte in the high eight bits of this field. For more
information about the data returned by your device

controller, refer to the hardware reference manual
for your controller.

WORD which the device driver must update upon
completion of an I/0 operation to indicate the number
of bytes of data actually transferred.

Reserved WORD.

WORD into which the I/0 System places the number of
the device for which this request 1s intended.

BYTE into which the L/0O System places the number of
the unit for which this request is intended.

BYTE into which the I/0 System places the function
code for the operation to be performed. Possible
function codes are:

Code Function
F$READ
F$WRITE
F$SEEK
F$SPECIAL
F$ATTACH$DEV
F$DETACH$DEV
F$OPEN
F$CLOSE

N oUW NRE=EO

WORD into which the I/0 System places the actual
function code of the operation, when the F$SPECIAL
function code was placed into the FUNCT field. The

value in this field depends upon the file driver to
be used with this device. The possible subfunctions

and the driver types to which they apply are as
follows:

File Driver Subfunct

For Connection Value Function

Physical¥* 0 Format track

Stream 0 Query

Stream 1 Satisfy

Physical or Named 2 Notify

Physical 3 Get disk/tape
data

Device Drivers 2-11

DEV$LOC

BUFF$P

DEVICE DRIVER INTERFACES

File Driver Subfunct

For Connection Value Function

Physical 4 Get terminal data

Physical 5 Set terminal data

Physical 6 Set signal

Physical 7 Rewind tape

Physical 8 Read tape file
mark

Physical 9 Write tape file
mark

Physical 10 Retension tape

11-32767 Reserved for

other Intel
products

*These functions apply both to iRMX 86 and

iRMX 88 systems. The other functions are
iRMX 86-specific.

The values from 32768 to 65535 are available for
user-written/custom device drivers.

DWORD into which the I/0 System initially places the
absolute byte location on the I/0 device where the
operation is to be performed. For example, for a
write operation, this is the address on the device
where writing begins. The 1/0 System fills out this
information when it passes the IORS to the driver
support routines.

If the device driver is a random access driver, the
random access support routines modify the information
in the DEV$LOC field before passing the IORS on to
user-written driver procedures listed in Chapter 5.
The value that the random access support routines
f11l out depends upon the TRACK$SIZE field in the
unit's Unit Information Table (see Chapter 3).

° If the TRACK$SIZE field is zero, the random
access support routines divide the value in
DEV$LOC by the device granularity and place that

¥?lf§ (the absolute sector number) in the DEV$LOC
eld.

° If the TRACK$SIZE field is nonzero, the random
access support routines use the absolute byte
number in DEV$LOC to calculate the track and
sector numbers. The routines then place the
track number in the high-order WORD (of DEV$LOC)

and the sector number in the low-order WORD (of
DEV$LOC) .

POINTER which the I/0 System sets to indicate the
internal buffer where data is read from or written to.

Device Drivers 2-12

COUNT

COUNT$FILL

AUX$P

DEVICE DRIVER INTERFACES

WORD which the I/0 System sets to indicate the number
of bytes to transfer.

Reserved WORD.

POINTER which the I/O System can set to indicate the
location of auxiliary data. Normally, the I/0 System

uses AUX$P to pass or receive the additional data
that the various subfunctions of the SPECIAL call
require.

The following paragraphs define the particular data

structures pointed to by AUX$P. The data structure
actually pointed to depends upon the SUBFUNCT field
of the IORS.

In a request to format a track on a disk or diskette,
FUNCT equals special, SUBFUNCT equals format track,
and AUX$P points to a structure of the form:

DECLARE FORMAT$TRACK STRUCTURE(
TRACK$NUMBER WORD,

INTERLEAVE WORD,
TRACK$OFFSET WORD,
FILL$CHAR BYTE) ;

These fields are defined as follows:

track$number The number of the track to be
formatted. Acceptable values are 0 to
(number of tracks on the volume - 1).

interleave The interleaving factor for the track.

(That is, the number of physical
sectors to advance when locating the
next logical sector.) The supplied
value, before being used, is evaluated
MOD the number of sectors per track.

track$offset The number of physical sectors to
advance when locating the first logical

sector on the next track.

fi1ll$char The byte value with which each sector
is to be filled.
NOTE

The rest of the information about the
AUX$P field is iRMX 86-specific.

Device Drivers 2-13

DEVICE DRIVER INTERFACES

In a request to set up an iRMX 86 mailbox, where the
iRMX 86 I/0 System is to send an object whenever a
door to a flexible disk drive is opened or the STOP
button on a hard disk drive 1is pressed, FUNCT equals
special, SUBFUNCT equals notify, and AUX$P points to
a structure of the form:

DECLARE SETUP$NOTIFY STRUCTURE(
MAILBOX SELECTOR,
OBJECT SELECTOR) ;

where the fields are defined in the i1RMX 86 BASIC 1I/0
SYSTEM REFERENCE MANUAL. Random access drivers do

not have to process such requests because they are
handled by the I/0 System.

In a request to obtain information about 1SBC 215 or
iSBC 220 (supported) disk devices, FUNCT equals
special, SUBFUNCT equals get device characteristics,
and AUX$P points to a structure of the form:

DECLARE DISK$DRIVE$DATA STRUCTURE(

CYLINDERS WORD,
FIXED BYTE,
REMOVABLE BYTE,
SECTORS BYTE,
SECTOR$SIZE WORD,
ALTERNATES BYTE);

where the fields are defined in the iRMX 86 BASIC I/0
SYSTEM REFERENCE MANUAL.

In a request to obtain information about iSBX 217
tape drives (associated with an iSBC 215G board),
FUNCT equals special, SUBFUNCT equals get device
characteristics, and AUX$P points to a structure of
the form:

DECLARE TAPE}DRIVE$DATA STRUCTURE(
TAPE WORD,
RESERVED(7) BYTE);

where the fields are defined in the iRMX 86 BASIC I/0
SYSTEM REFERENCE MANUAL.

In a request to read or write terminal mode

information for a terminal being driven by a terminal
driver, FUNCT equals special, SUBFUNCT equals get
terminal attributes (for reading) or set terminal

attributes (for writing), and AUX$P points to a
structure of the form:

Device Drivers 2-14

LINK$FOR

LINK$BACK

DEVICE DRIVER INTERFACES

DECLARE TERMINAL$ATTRIBUTES STRUCTURE(

NUM$WORDS WORD,
NUM$USED WORD,
CONNECTION$FLAGS WORD,
TERMINAL$FLAGS WORD,
IN$BAUDSRATE WORD,
OUT$BAUD$RATE WORD,
SCROLL$LINES WORD,
XYSIZE WORD,
X$ Y$OFFSET WORD,
FLOW$CONTROL WORD,
HIGH$WATER $MARK WORD,
LOW$WATER$MARK WORD),
FCONCHAR WORD,
FCOFFCHAR WORD) ;

where the fields are defined in the iRMX 86 BASIC I1/0
SYSTEM REFERENCE MANUAL. If you are using the
Terminal Support Code, this speclal subfunction is
invisible to the terminal device driver.

In a request to set up special character recognition
in the input stream of a terminal driver for
signalling purposes, FUNCT equals special, SUBFUNCT

equals signal, and AUX$P points to a structure of the
form:

DECLARE SIGNAL$CHARACTER STRUCTURE(
SEMAPHORE SELECTOR
CHARACTER BYTE);

where the fields are defined in the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL. In a request to read a tape
file mark, FUNCT equals special, SUBFUNCT equals read

tape file mark, and AUX$P points to a structure of
the form:

DECLARE READ$FILE$MARK STRUCTURE(
SEARCH BYTE);

where the field is defined in the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL.

POINTER that the device driver/device driver support
routines can use to implement a request queue. This
field points to the location of the next IORS in the
queue.

POINTER that the device driver/device driver support

routines can use to implement a request queue. This
field points to the location of the previous IORS in
the queue.

Device Drivers 2-15

DEVICE DRIVER INTERFACES

RESP$MBOX SELECTOR that the I/0 System fills with either an
iRMX 86 token for the response mailbox or the address
of an i1RMX 88 exchange. Upon completion of the I1/0
request, the device driver/device driver support

routines must send the IORS to this response mailbox
or exchange.

DONE BYTE that the device driver can set to TRUE (OFFd) or
FALSE (00H) to indicate whether the entire request
has been completed.

FILL Reserved BYTE.

CANCELS$ID SELECTOR used to identify queued 1/0 requests that
CANCEL$IO can remove from the queue.

CONNS$T SELECTOR used in requests to the iRMX 86 I/0 System.
This field contains the token of the iRMX 86 file
connection through which the request was issued.

DEVICE INTERFACES

To carry out I/0 requests, one or more of the routines in every device
driver must actually send commands to the device itself. The steps that
a procedure of this sort must go through vary comnsiderably, depending on
the type of I/0 device. Procedures supplied with the I/0 System to
manipulate devices such as the 1SBC 204 and iSBC 206 devices use the
PL/M~-86 builtins INPUT and OUTPUT to transmit to and receive from I1/0
ports. Other devices may require different methods. The I/0 System

places no restrictions on the method of communicating with devices. Use
the method that the device requires.

Fiek

Device Drivers 2-16

CHAPTER 3
CATEGORIES AND PROPERTIES
OF DEVICES AND DRIVERS

There are four types of device drivers in the iRMX 86 environment:
common, random access, custom, and terminal. There are three types of
device drivers in the iRMX 88 environment: common, random access, and
custom. This chapter defines the distinctions between the types of
drivers and discusses the characteristics and data structures pertaining
to common and random access device drivers. Chapters 5, 6, and 7 are
devoted to explaining how to write the various types of device drivers.

CATEGORIES OF DEVICES

Because the 1/0 System provides procedures that constitute the bulk of

any common or random access device driver, you should consider the
possibility that your device is a common or random access device. If
your device falls in either of these categories, you can avoid most of
the work of writing a device driver by using the supplied procedures.
The following sections define the four types of devices.

COMMON DEVICES

Common devices are relatively simple devices other than terminals, such

as line printers. This category includes devices that conform to the
following conditions:

] A first—-in/first-out mechanism for queuing requests is sufficient
for accessing these devices.

e Only one interrupt level is needed to service a device.

° Data either read or written by these devices does not need to be
broken up into blocks.

If you have a device that fits into this category, you can save the
effort of creating an entire device driver by using the common driver
routines supplied by the I/O System. Chapter 5 of this manual describes
the procedures that you must write to complete the balance of a common
device driver.

RANDOM ACCESS DEVICES

A random access device 1s a device, such as a disk drive, in which data

can be read from or written to any address of the device. The support
routines provided by the I/0 System for random access assume the
following conditions:

Device Drivers 3-1

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

e A first-in/first-out mechanism for queuing requests is sufficient
for accessing these devices.

® Only one interrupt level is needed to service the device.
° 1/0 requests must be broken up into blocks of a specific length.
° The device supports random access seek operations.

If you have devices that fit into the random access category, you can
take advantage of the random access support routines provided by the I/0
System. Chapter 5 of this manual describes the procedures that you must

write to complete the balance of a random access device driver.

TERMINAL DEVICES

A terminal device is characterized by the fact that it reads and writes

single characters, with an interrupt for each character. Because such
devices are entirely different than common, random access, and even

custom devices, terminal drivers and their required data structures are
described in Chapter 7. The remainder of this chapter applies only to
common, random access, and custom device drivers.

CUSTOM DEVICES

If your device fits neither the common nor the random access category,

and is not a terminal or terminal-like device, you must write the entire
driver for the device. The requirements of a custom device driver are

defined in Chapter 6.

1/0 SYSTEM-SUPPLIED ROUTINES FOR COMMON AND RANDOM ACCESS DEVICE DRIVERS

The I/0 System supplies the common and random access routines that it
calls when processing I/0 requests. Flow charts for these procedures
appear in Appendix A. The names and functions of these procedures are as
follows: (The "RAD$" prefix applies to 1RMX 88 routine names.)

Routine Function
(RAD$) INIT$IO Creates the resources needed by the remainder of

the driver routines, creates an interrupt task,
and calls a user—supplied routine that
initializes the device itself.

(RAD$)FINISH$ IO Deletes the resources used by the other driver
routines, deletes the interrupt task, and calls a
user-supplied procedure that performs final
processing on the device itself.

Device Drivers 3-2

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Routine Function

(RAD$)QUEUES$IO Places 1/0 requests (IORSs) on the queue of
requests.

(RAD$) CANCEL$ IO Removes one or more requests from the request

queue, possibly stopping the processing of a
request that has already been started.

These routines process I/0 requests for both common and random access
devices. They distinguish between categories based on the value of the
NUM$BUFFERS field in the unit's device-unit information block (DUIB).
(When calling each of these routines, the I/0 System supplies a pointer
to the DUIB as one of the parameters.) If the NUM$BUFFERS field is
nonzero, the routines assume the device 1s a random access device. If
the NUM$BUFFERS field is zero, the routines assume the device is a common
device.

In addition to the routines just described, the I/Q System supplies an
interrupt handler (interrupt service routine) and an interrupt task
(called INTERRUPT$TASK) which respond to all interrupts generated by the
units of a device, process those interrupts, and start the device working
on the next I/0 request on the queue. The INIT$I0 procedure creates the
interrupt task.

After a device finishes processing a request, it sends an interrupt to
the processor. As a consequence, the processor calls the interrupt
handler. This handler either processes the interrupt itself or invokes
an interrupt task to process the interrupt. Since an interrupt handler
is limited in the types of system calls that it can make and the number
of interrupts that can be enabled while it is processing, an interrupt
task usually services the interrupt. The interrupt task feeds the
results of the interrupt back to the I/O System (data from a read
operation, status from other types of operations). The interrupt task
then gets the next I/0 request from the queue and starts the device
processing this request. This cycle continues until the device is
detached.

Device Drivers 3-3

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Figure 3-1 shows the interaction between an interrupt task, an I/O
device, an I/0 request queue, and the Queue I/0 device driver procedure.
The interrupt task in this figure is in a continual cycle of waiting for
an interrupt, processing it, getting the next I/0 request, and starting
up the device again. While this 1s going on, the Queue I/0O procedure
runs in parallel, putting additional I/O requests on the queue.

REQUEST QUEUE INTERRUPT TASK

1/0 REQUEST -

@ SERVICE (® START DEVICE
(O GET REQUEST INTERRUPT [

1/0 REQUEST R
",

DEVICE

(D INTERRUPT

QUEUE 1/0 PROCEDURE

I/0 REQUEST |50 e qlESTS ON QUEUE

x-678

Figure 3-1. Interrupt Task Interaction

I/0 SYSTEM ALGORITHM FOR CALLING THE DEVI.CE DRIVER PROCEDURES

The I/0 System calls each of the four device driver procedures in
response to specific conditions. Figure 3-2 is a flow chart that
illustrates the conditions under which three of the four procedures are
called. The following numbered paragraphs discuss the portions of Figure
3-2 labeled with corresponding circled numbers.

l. To start I1/0 processing, an application task must make an I/0
request. It can do this by invoking any of a variety of system
calls. However, if you are an iRMX 86 user, the first I/O request to
each device-unit must be an RQAPHYSICAL$SATTACH$DEVICE system call,
and if you are an iRMX 88 user, the first request to each device=-unit
must be either a DQ$ATTACH or a DQ$CREATE system call.

Device Drivers 3-4

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

If the request results from an RQAPHYSICAL$ATTACH$DEVICE, a
DQ$ATTACH, or a DQ$CREATE system call, the I/O System checks to
see if any other units of the device are currently attached. If
no other units of the device are currently attached, the I/0
System realizes that the device has not been initialized and calls
the Initialize I/0 procedure first, before queueing the request.

Whether or not the I/0 System called the Initialize I/O procedure,

it calls the Queue I/0 procedure to queue the request for
execution.

If you are an iRMX 86 user and the request just queued resulted
from an iRMX 86 RQAPHYSICAL$DETACH$DEVICE system call, the I/0
System checks to see if any other units of the device are
currently attached. If no other units of the device are attached,
the I/0 System calls the Finish I/0 procedure to do any final
processing on the device and clean up resources used by the device
driver routines.

If you are an iRMX 88 user and the request just queued resulted
from either a DQ$DETACH or a DQ$DELETE system call, the I/0 System
checks to see if any other units of the device are currently
attached. If no other units of the device are attached, the I/0
System calls the Finish I/O procedure to do any final processing
on the device and clean up resources used by the device driver
routines,

The iRMX 86 I/0 System calls the fourth device driver procedure, the
Cancel I/0 procedure, under the following conditions:

If the user makes an RQAPHYSICAL$DETACH$DEVICE system call
specifying the hard detach option, to forcibly detach the
connection objects associated with a device—unit. The iRMX 86
BASIC 1/0 SYSTEM REFERENCE MANUAL describes the hard detach
option.

If the job containing the task which made a request is deleted.

The iRMX 88 I/0 System does not call the Cancel I1I/0 procedure.

Device Drivers 3-5

CATEGORIES AND PROPERTIES OF DEVICES AND

DRIVERS

THE USER MAKES AN I/0 REQUEST
VIAASYSTEM CALL

DOES THIS
REQUEST RESULT FROM AN
RQS$ASPHYSICALSATTACHSDEVICE
SYSTEM CALL? OR FROM A
DQSATTACH OR
DQSCREATE §YSTEM CALL

YES

NO
ARE
ANY UNITS
o YES QOF THE DEVICE
By < CURRENTLY
ATTASHED
/O SYSTEM CALLS THE
INITIALIZE I/O PROCEDURE TO
INITIALIZE THE DEVICE
« |
® !
I/0 SYSTEM CALLS THE QUEUE I/0
PROCEDURE TO PLACE THE
REQUEST ON THE QUEUE

DOES
THIS REQUEST
RESULT FROM AN
RQSASPHYSICALS-
DETACHSDEVICE
SYSTEM CALL
?

-l
Y

YES @

ARE
ANY OTHER
UNITS OF THE
DEVICE CURRENTLY
ATTA?CHED

1/0 SYSTEM CALLS THE FINISH I/0
PROCEDURE TO CLEAN UP THE
DEVICE AND DELETE OBJECTS

(RETURN

)

Figure 3-2. How the I/0

1877

System Calls the Device Driver Procedures

Device Drivers 3-6

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

REQUIRED DATA STRUCTURES

In order for the I/0 System-supplied routines to be able to call the
user—supplied routines, you must supply the addresses of these
user—-supplied routines, as well as other information, in a Device
Information Table. In addition, processing I/0 requests through a random
access driver requires a Unit Information Table. Each DUIB contains one

pointer field for a Device Information Table and another for a Unit
Information Table.

DUIBs that correspond to units of the same device should point to the
same Device Information Table, but they can point to different Unit

Information Tables, if the units have different characteristics. Figure
3-3 illustrates this.

DUiB1

Device 1
Unit 0

UNITSINFOS$1

DEVSINFOS$t
Unit
0

DEVSINFO$1 De‘;'ce

UNITSINFO$1

Unit
1

puiB2

Device 1
Unit 1

DEVSINFOS$1

UNITSINFOS$2

UNITSINFOS$2 ouB3 DEVSINFOS$2 |

Device - 2
Unit - 0 unit

Device
2

DEVSINFOS2

UNITSINFOS$2

x-293

Figure 3-3. DUIBs, Device and Unit Information Tables

Device Drivers 3-7

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

DEVICE INFORMATION TABLE

Common and random access Device Information Tables contain the same
fields in the same order. When creating Device Information Tables for
iRMX 86 applications, code them in the format shown here (as
assembly-language structures). If you give the iRMX 86 ICU the pathname
of your Unit Information Table file, the ICU includes the file in the
assembly of IDEVCF.A86 (a Basic I/0 System configuration file).
IDEVCF.A86 contains the definition of the structure.

The fields DEVICE$INIT, DEVICE$FINISH, DEVICE$START, DEVICE$STOP, and
DEVICE$INTERRUPT contain the names of user-supplied procedures whose
duties are described in Chapter 5. When creating the file containing
your Device Information Tables, specify external declarations for these
user-supplied procedures. This allows the code for these user-supplied
procedures to be included into the assembly of the I/O System. For
example, if your procedures are named DEVICE$INIT, DEVICE$FINISH,
DEVICE$START, DEVICE$STOP, and DEVICE$INVTERRUPT, include the following
declarations in the file containing your Device Information Tables:

extrn device$init: near

extrn device$finish: near
extrn device$start: near
extrn device$stop: near
extrn device$interrupt: near

The iRMX 88 ICU prompts you for each field in the Device Information

Table structure. The. iRMX 38 ICU generates the Device Information Table
and places it in the device configuration source file.

Use the following format when coding your Device Information Tables:

RADEV_DEV_INFO <

& LEVEL, ; word
& PRIORITY, ; byte
& STACK$SIZE, 3 word
& DATA$SIZE, ; word
& NUM$UNITS, 3 word
& DEVICE$INIT, 3 word
& DEVICES$FINISH, 3 word
& DEVICE$START, 3 word
& DEVICE$STOP, 3 word
& DEVICE$ INTERRUPT ; word
& >
where:
LEVEL WORD specifying an encoded interrupt level at which

the device will interrupt. The interrupt task uses
this value to associate itself with the correct
interrupt level. The values for this field are
encoded as follows:

Device Drivers 3-8

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

PRIORITY

STACK$SIZE

DATA$SIZE

NUM$UNITS

iRMX 86 VALUES

Bits Value
15-7 0
64 First digit of the interrupt level
(0-7).
3 If one, the level is a master level and
bits 6-4 specify the entire level
number,

If zero, the level 1s a slave level and
bits 2-0 specify the second digit.

2-0 Second digit of the interrupt level
(0-7), if bit 3 is zero.

iRMX 88 VALUES

The values available are 0 through 3FH. Refer to
the iRMX 88 REFERENCE MANUAL for further
information.

BYTE specifying the initial priority of the
interrupt task. The actual priority of an

iRMX 86 interrupt task might change because the
iRMX 86 Nucleus adjusts an interrupt task's
priority according to the interrupt level that it
services. Refer to the iRMX 86 NUCLEUS REFERENCE
MANUAL for further information about this
relationship between Interrupt task priorities
and interrupt levels.

WORD specifying the size, in bytes, of the stack
for the user-written device interrupt procedure
(and procedures that it calls). This number
should not include stack requirements for the I/0
System—-supplied procedures. They add their
requirements to this figure.

WORD specifying the size, in bytes, of the user
portion of the device's data storage area. This
figure should not include the amount needed by
the I/0 System—-supplied procedures; rather, it
should include only that amount needed by the
user-written routines. This then is the size of
the read or write buffers plus any flags that the
user-written routines need.

WORD specifying the number of units supported by

the driver. Units are assumed to be numbered
consecutively, starting with zero.

Device Drivers 3-9

CATEGORLIES AND PROPERTIES OF DEVICES AND DRIVERS

DEVICE$INIT WORD specifying the start address of a

user-written device initialization procedure.
The format of this procedure, which INIT$IO

calls, is described in Chapter 5.

DEVICE$FINISH WORD specifying the start address of a

user-Written device finish procedure. The format
of this procedure, which FINISH$IO calls, is
described in Chapter 5.

DEVICE$START WORD specifying the start address of a
user-written device start procedure. The format

of this procedure, which QUEUE$IO and
INTERRUPTS$TASK call, is described in Chapter 5.

DEVICE$STOP WORD specifying the start address of a

user-written device stop procedure. The format
of this procedure, which CANCEL$IO calls, is

described in Chapter 5.

DEVICE$ INTERRUPT WORD specifying the start address of a
user-written device interrupt procedure. The
format of this procedure, which INTERRUPT$TASK
calls, is described in Chapter 5.

Depending on the requirements of your device, you can append additional

information to the RADEV _DEV INFO structure. For example, most devices
require you to append the I/0 port address to this structure, so that the

user-written procedures have access to the device.

UNI'f INFORMATION TABLE

If you have random access device drivers in your system, you must create

a Unit Information Table for each different type of unit in your system.
Each random access device-unit's DUIB must point to one Unit Information
Table, although multiple DUIBs can point to the same Unit Information
Table. The Unit Information Table must include all information that is

unit-dependent.

When creating Unit Information Tables for iRMX 86 applications, code them

in the format shown here (as assembly-language structures). If you give
the iRMX 86 ICU the pathname of your Unit Information Table file, the ICU
includes the file in the assembly of IDEVCF.A86 (a Basic I/0 System

configuration file). IDEVCF.A86 contains the definition of the structure.

The iRMX 88 ICU prompts you for some fields in the Unit Information Table

structure. The iRMX 38 ICU generates the Unit Information Table and
places it in the device configuration source file.

The minimum requirements for the structure of the Unit Information Table
are as follows:

Device Drivers 3-10

CATEGORIES AND PROPERTLES OF DEVICES AND DRIVERS

RADEV_UNIT INFO <

& TRACK$SIZE,
& MAX$RETRY,
& CYLINDER$SIZE ; word
&

>

where:

TRACK$SLZE

MAX$RETRY

CYLINDER$SIZE

word
word

s we

WORD specifying the size, in bytes, of a single track
of a volume on the unit. If the device controller
supports reading and writing across track boundaries,
and your driver is a random—access driver, place a
zero in this field. If you specify a zero for this
field, the I/0 System-supplied random access support
procedures place an absolute sector number in the
DEV$LOC field of the IORS. If you specify a nonzero
value for this field, the random access support
procedures guarantee that read and write requests do
not cross track boundaries. They do this by placing
the sector number in the low-order word of the DEV$LOC
field of the IORS and the track number in the
high-order word of the DEV$LOC field before calling a
user-written device start procedure. Instructions for
writing a device start procedure are contained in
Chapter 5.

WORD specifying the maximum number of times an I/0
request should be tried if an error occurs. Nine is
the recommended value for this field. When this field
contains a nonzero value, the I/0 System—-supplied
procedures guarantee that read or write requests are
retried if the user-supplied device start or device
interrupt procedures return an IO$SOFT condition in
the IORS.UNIT$STATUS field. (The IORS.UNIT$STATUS
field is described in the "IORS Structure" section of
Chapter 2.)

For iRMX 86 systems, a WORD whose meaning depends on
its value, as follows:

0 The 1/0 System never requests a seek

operation. Instead, it expects the device
driver/controller to perform implied "seeks"
when a read/write on the unit begins on a

cylinder which is different from the one

associated with the current position of the
read/write head.

1 The 1/0 System automatically requests a seek
operation (to seek to the correct cylinder)
before performing a read or write. The

device driver for the unit must call the
SEEK$COMPLETE procedure immediately

following each seek operation.

Device Drivers 3-11

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Other Any other value specifies the number of
sectors in a cylinder on the unit. The I/0
System automatically requests a seek
operation whenever a requested read or write
operation on the unit begins in a different
cylinder than that associated with the
current position of the read/write head.
The device driver for the unit must call the
SEEK$COMPLETE procedure immediately

following each seek operation.

RELATIONSHIPS BEIWEEN I/0 PROCEDURES AND I/O DATA STRUCTURES

This section brings together several of the procedures and data
structures that have been described so far in this manual. Figure 3-4
shows the many relationships that exist among these entities, with solid
arrows indicating procedure calls and dotted arrows indicating pointers.
Note that the I/0 System contains the address of each DUIB, which in turn
contains the addresses of the procedures that the I/0O System calls when
performing I/0 on the associated device-unit. The DUIB also contains the
address of the Device Information Table and, if the device is a random
access device, the Unit Information Table. The Device Information Table,
in turn, contains the addresses of tie procedures that are called by the
procedures that the I1/0 System calls. It is through these links that the
appropriate calls are made in the serviciang of an 1/0 request for a
particular device-unit.

Device Drivers 3~12

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

» DEVICESINIT.

/
/

/ L DEVICE
QUEUESIO D;vucsssmv
NUCLEUS._ / , /
~
/ /)
/ 7AINTERRUPT———> INTERRUPT AZ—7> DEVICESINTERRUPT
TASK —————— /O SYSTEM / // HANDLER TASK // / /4 \
/
/ I ;, /7 -
/ uNIt
/ /7 =
/ / / / / /
/ /.y CANCELSIO: a (osvncsssmp
/'y P 1l
/ —
/ ’ / / =7
/ / e Yy A
/ —# /
/ / / 7 —— / /
/ S FINISHS! » DEVICES!
ouie ,/ / / 7 - / / -
. S, L= VAV
: L T lyr s
DIVSUNIT e S s
INITSIO e DEVICE INFO. TABLE / y VY
QUEUESIO // s . / / /// 5
CANCELSIO _ .
FINISHSIO I = ™ / /. A LEGEND:
DEVICESINFOSP__|— DEVICESINIT
UNITSINFOSP DEVICESFINISH ! ————» PROCEDURE CALL
H AN DEVICESSTART 7 —— —— > REFERENCE
: AN DEVICESSTOP /
N N DEVICESINTERRUPT
AN
AN
AN
AN
\ UNIT INFO. TABLE

x-118

Figure 3-4. Relationships Between I/0 Procedures and [/O Data Structures

DEVICE DATA STORAGE AREA

The common and random access device drivers are set up so that all data

that is local to a device is maintained in an area of memory. The
Initialize I/0 procedure creates this device data storage area, and the

other procedures of the driver access and update information in it as
needed. Storing the device-local data In a central area serves two
purposes.

First, all device driver procedures that service individual units of the

device can access and update the same data. The Initialize I/0 procedure
passes the address of the area back to the I/0 System, which in turn
gives the address to the other procedures of the driver.

Device Drivers 3-13

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

They can then place information relevant to the device as a whole into
the area. The identity of the first IORS on the request queue is
maintained in this area, as well as the attachment status of the
individual units and a means of accessing the interrupt task.

Second, several devices of the same type can share the same device driver
code and still maintain separate device data areas. For example, suppose
two iSBC 204 devices use the same device driver code. The same
Initialize I/0O procedure is called for each device, and each time it is
called it obtains memory for the device data. However, the memory areas
that it creates are different. Only the incarnations of the routines
that service units of a particular device are able to access the device
data area for that device.

Although the common and random access device drivers already provide this

mechanism, you may want to include a device data storage area in any
custom driver that you write.

WRITING DRIVERS FOR USE WITH BOTH 1RMX" 86— AND 1RMX"™ 88~BASED SYSTEMS

A common or random access device driver that makes no system calls is
compatible with both the iRMX 86 and iRMX 88 I/O Systems. Consequently,
such a device driver can be "ported"” between applications based on the
two 1RMX systems.

ek

Device Drivers 3-14

CHAPTER 4
1/0 REQUESTS

This chapter contains two kinds of information that writers of drivers
for devices other than terminals will find useful. Presented first are
summaries of the actions that the I/0 System takes in response to the
various kinds of I/0 requests that application tasks can make. Next are
three tables —— one for each type of device driver —-— that show which
DUIB and IORS filelds device drivers should be concerned with.

I1/0 SYSTEM RESPONSES TO I/0 REQUESTS

This section shows which device driver procedures the L/O System calls
when it processes each of the eight kinds of 1/0 requests. When there
are multiple calls, the order of the calls is significant.

ATTACH DEVICE REQUESTS

When the I/0 System receives the first attach device request for a
device, it makes the following calls, in order, to device driver
procedures:

The Call The Effects of the Call

Initialize I/0 The driver resets the device as a whole

and creates the device data storage
area and interrupt task(s).

Queue 1/0, with the The driver resets the selected unit.
FUNCT field of the IORS
set to F$ATTACH (=4)

When the I/0 System receives an attach device request that is not the
first for the device, it makes the following call:

The Call The Effects of the Call

Queue I/0, with the The driver resets the selected unit.
FUNCT field of the IORS
set to F$ATTACH (=4)

Device Drivers 4-1

I/0 REQUESTS

DETACH DEVICE REQUESTS

When the I/O System receives a detach device request, and there is more
than one unit of the device attached, it makes the following call:

The Call Tte Effects of the Call
Queue I/0, with the The driver performs cleanup operations
FUNCT field of the IORS for the selected unit, if necessary.

set to F$DETACH (=5)

When the I/0 System receives a detach device request, and there is only

one attached unit on the device, it makes the following calls, in order,
to device driver procedures:

The Call The Effects of the Call
Queue I/0, with the The driver performs cleanup operations
FUNCT field of the IORS for the selected unit, if necessary.

set to F$DETACH (=5)

Finish I/0 The driver performs cleanup operations
for the device as a whole (if
necessary) and deletes the objects
created by Initialize I1/0.

READ, WRITE, OPEN, CLOSE, SEEK, AND SPECIAL REQUESTS

When the I/0 System receives a read, write, open, close, seek, or special
request, it makes the following call to a device driver procedure:

The Call The Effects of the Call
Queue I1/0, with the FUNCT The driver performs the requested
field of the IORS set to operation. (F$OPEN and F$CLOSE

F$READ (=0), F$WRITE (=1), usually require no processing.)
F$OPEN (=6), F$CLOSE (=7),

F$SEEK (=2), or F$SPECIAL

(=3), depending on the type

of the I/0 request.

CANCEL REQUESTS
When a connection is deleted while I/0 might be in progress, such as when

an 1RMX 86 job is deleted, the I/0 System makes the following calls, in
order, to device driver procedures:

Device Drivers 4-2

I/0 REQUESTS

The Call The Effects of the Call

Cancel 1/0 The driver removes from the request

queue all requests that contain the

same Cancel ID value as that in the
current request, and stops processing

if necessary.

Queue 1/0, with the When this request reaches the front of

FUNCT field of the the queue, it is simply returned to the
IORS set to F$CLOSE indicated response mailbox (exchange).

(=7)

DUIB AND IORS FIELDS USED BY DEVICE DRIVERS

Tables 4-1, 4-2, and 4-3 indicate, for each type of device driver, the

fields of DUIBs and IORSs with which user-written portions of device
drivers need to be concerned.

Device Drivers 4-3

I/0 REQUESTS

Table 4-1. DUIB and IORS Fields Used by Common Device Drivers

Attach Detach
Device Device Open C(lose

Read Write

Seek Special

DUIB

Name

File$drivers

Functs

Flags m m m m

Dev$gran

3
3
=]
=]

]

E]

=]

Dev$size m m m m

Device

Unit m m m m

Dev$unit

Init$io

Finish$io

Queue$io

Cancel$io

Device$info$p m m m m

Unit$info$p m m m m

m

Update$ timeout

Num$buffers

Priority

Fixed$update

Max$buffers

IORS
Status W W W W

Unit$status W W W w

=

£

Actual

Actual$fill

Device

Unit m m m m

Funct r r r r

Subfunct

Dev$loc

Buff$p

Count

Count$fill

Aux$p

Link$for

Link$back

Resp$mbox

Done W W W W

Fill

Cancel$id

Conn$ t

r ——= 1is read by the device driver
w === is written by the device driver
m -—- might be read by some device drivers

Device Drivers 4-4

I1/0 REQUESTS

Table 4-2. DUIB and IORS Fields Used by Random Access Device Drivers

Attach Detach
Device Device Open Close Read Write Seek Specilal

DUIB

Name

File$drivers

Functs

Flags m m m m m m m m

Dev$gran m m

=]
=]
=]
=]
=)
8

Dev$size m m m_ m m m m m

Device

Unit m m m m m m m m

Dev$unit

Init$io

Finish$io

Queue$io

Cancel$io

Device$info$p m m m m m m m m

Unit$info$p m m m m m m m m

Update$ timeout

Num$buffers

Priority

Fixed$update

Max$buffers

I0RS
Status W W W W W w W W

Unit$status w W W W

g
E
=
b

Actual W w

Actual$fill

Device

Unit m m m m m mn m m

Funct r r r r r r r r

Subfunct r

Dev$loc r r r

Buff$p

=
(2]

Count 7 r r

Count$fill

Aux$p m

Link$for

Link$back

Resp$mbox

Done w w W w W W W w

Fill

Cancel$id

Conn$ t

r ——= 1is read by the device driver
w ——— 1s written by the device driver
m ——- might be read by some device drivers

Device Drivers 4-5

Table 4-3.

I/0 REQUESTS

DUIB and IORS Fields Used by Custom Device Drivers

Attach Detach
Device Device

Open

Close Read Write

Seek Special

DUIB
Name
File$drivers
Functs
Flags
Dev$gran
Dev$size
Device
Unit
Dev$unit
Init$io
Finish$io
Queue$io
Cancel$io
Device$info$p
Unit$info$p
Update$ timeout
Num$buffers
Priority
Fixed$update
Max$buffers

IORS

Status
Unit$status
Actual
Actual$fill
Device
Unit

Funct
Subfunct
Dev$loc
Buff$p
Count
Count$£fill
Aux$p
Link$for
Link$back
Resp$mbox
Done

Fill
Cancel$id
Conn$ t

=]
=

=)

E]

=]

3

=
=

)

]

2} L]

(2]

Plpigip|®
PPl

R AR R

[SREN L B EOR R

SRR IR E R

ofwlnel
plonls]e s

sS|p|pisinie

—=— 1is read by the device driver

psE R
1
]
I

is written by the device driver
——— might be read by some device drivers

-—— 1s available for any purpose sulting the needs of the device

driver

Device Drivers 4-6

Kk

CHAPTER S
WRITING COMMON OR RANDOM
ACCESS DEVICE DRIVERS

This chapter contains the calling sequences for the procedures that you
must provide when writing a common or random access device driver. Where
possible, descriptions of the duties of these procedures accompany the
calling sequences.

In addition to providing information about the procedures that common or
random access drivers must supply, this chapter describes the purpose and
calling sequence for each of five procedures, two of which random access
device drivers in iRMX 86 applications must call under certain conditions.

INTRODUCTION TO PROCEDURES THAT DEVICE DRIVERS MUST SUPPLY

The routines that are provided by the I/0 System and that the L/O System
calls (INIT$I0, FINISH$IO, QUEUE$IO, CANCEL$IO, and INTERRUPT$TASK for
iRMX 86 systems) (RAD$INIT$IO, RAD$SFINISH$IO, RAD$QUEUES$IO,
RAD$CANCEL$IO, and INTERRRUPT$TASK for iRMX 88 systems) constitute the
bulk of a common or random access device driver. These routines, in
turn, make calls to device-dependent routines that you must supply.
These device—dependent routines are described here briefly and then are
presented in detail:

A device initialization procedure. This procedure must perform any
initialization functions necessary to get the device ready to process
I/0 requests. INIT$IO calls this procedure.

A device finish procedure. This procedure must perform any

necessary final processing on the device so that the device can be
detached. TFINISH$IO calls this procedure.

A device start procedure., This procedure must start the device
processing any possible I/0 function. QUEUE$IO and INTERRUPT$TASK
(the I/0 System—-supplied interrupt task) call this procedure.

A device stop procedure. This procedure must stop the device from

processing the current I/0 function, if that function could take an
indefinite amount of time. CANCEL$IO calls this procedure.

A device interrupt procedure. This procedure must do all of the

device-dependent processing that results from the device sending an
interrupt. INTERRUPT$TASK calls this procedure.

Device Drivers 5-1

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

DEVICE INITIALIZATION PROCEDURE

The INIT$I0 procedure calls the user-written device initialization
procedure to initilalize the device. The format of the call to the
user-written device initlalization procedure is as follows:

CALL device$init(duib$p, ddata$p, status$p);

where:

device$init Name of the device initialization procedure. You can
use any name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the Device Information Table.

duib$p POINTER to the DUIB of the device-unit being
attached. From this DUIB, the device initialization
procedure can obtain the Device Information Table,

where information such as the I/0 port address is
stored.

ddata$p POINTER to the user portion of the device's data
storage area. You must specify the size of this
portion in the Device Information Table for this
device. The device initialization procedure can use
this data area for whatever purposes 1t chooses.
Possible uses for this data area include local flags
and buffer areas.

status$p POINTER to a WORD in which the device initialization
procedure must return the status of the initialization
operation. It should return the E$0OK condition code
if the initialization is successful; otherwise it
should return the appropriate exceptional condition
code. If initialization does not complete
successfully, the device initialization procedure must
ensure that any resources it creates are deleted.

If you have a device that does not need to be initialized before it can
be used, you can use the default device Initialization procedure supplied
by the I/0 System. The name of this procedure is DEFAULT$INIT. Specify
this name in the Device Information Tabla. DEFAULT$INIT does nothing but
return the E$0K condition code.

DEVICE FINISH PROCEDURE

The FINISH$IO procedure calls the user-written device finish procedure to
perform final processing on the device, after the last I/0 request has
been processed. The format of the call to the device finish procedure is
as follows:

CALL device$finish(duib$p, ddata$p);

Device Drivers 5-2

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

where:

device$finish Name of the device finish procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the Device Information Table.

duib$p POINTER to the DUIB of the device-unit being
detached. From this DUIB, the device finish procedure
can obtain the Device Information Table, where
information such as the I/0 port address is stored.

ddata$p POINTER to the user portion of the device's data
storage area. The device finish procedure should
obtain, from this data area, identification of any
resources other user-written procedures may have
created, and delete these resources.

If you have a device that does not require any final processing, you can
use the default device finish procedure supplied by the I/O System. The

name of this procedure is DEFAULT$FINISH. Specify this name in the
Device Information Table. DEFAULT$FINISH merely returns control to the

caller. It is normally used when the default initialization procedure
DEFAULT$INIT is used.

DEVICE START PROCEDURE

Both QUEUE$IO and INTERRUPT$TASK make calls to the device start procedure
to start an I/0 function. QUEUE$IO calls this procedure on receiving an
I/0 request when the request queue is empty. INTERRUPT$TASK calls the
device start procedure after it finishes one I/0 request if there are one
or more I/0 requests on the queue. The format of the call to the device
start procedure is as follows:

CALL device$start(iors$p, duib$p, ddata$p);

where:

device$start Name of the device start procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the Device Information Table.

iors$p POINTER to the IORS of the request. The device start
procedure must access the IORS to obtain information
such as the type of I/0 function requested, the
address on the device of the byte where I/0 is to
commence, and the buffer address.

Device Drivers 5-3

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

duib$p POINTER to the DUIB of the device-unit for which the

I/0 request is intended. The device start procedure
can use the DUIB to access the Device Information

Table, where information such as the I/0 port address
is stored.

ddata$p POINTER to the user portion of the device's data

storage area. The device start procedure can use this
data area to set flags or store data.

The device start procedure must do the following:

It must be able to start the device processing any of the

functions supported by the device and recognize that requests for
nonsupported functions are error conditions.

If it transfers any data, it must update the IORS.ACTUAL field to

reflect the total number of bytes of data transferred (that is,

if it transfers 128 bytes of data, it must put 128 in the
IORS.ACTUAL field).

If an error occurs when the device start procedure tries to start
the device (such as on an write request to a write—protected
disk), the device start procedure must set the IORS.STATUS field
to indicate an E$I0 condition and the IORS.UNIT$STATUS field to a
nonzero value. The lower four bilts of the field should be set as
indicated in the "IORS Structure" section of Chapter 2. The
remaining bits of the field can be set to any value (for example,
the iSBC 204 device driver returns the device's result byte in
the remainder of this field). If the function completes without
an error, the device start procedure must set the IORS.STATUS
field to indicate an E$0OK condition.

If the device start procedure determines that the I/0 request has
been processed completely, either because of an error or because
the request has completed successfully, it must set the IORS.DONE
field to TRUE. The I/0 request will not always be completed; it
may take several calls to the device interrupt procedure before a
request is completed. However, if the request is finished and
the device start procedure does not set the IORS.DONE field to
TRUE, the device driver support routines wait until the device
sends an interrupt and the device interrupt procedure sets
IORS.DONE to TRUE, before determining that the request is
actually finished.

DEVICE STOP PROCEDURE

The CANCEL$IO procedure calls the user-written device stop procedure to
stop the device from performing the current I/0 function. The format of
the call to the device stop procedure is as follows:

Device Drivers 5-4

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

CALL device$stop(iors$p, duib$p, ddata$p);

where:

device$stop Name of the device stop procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
this name in the Device Information Table.

iors$p POINTER to the IORS of the request. The device stop
procedure needs this information to determine what
type of function to stop.

duib$p POINTER to the DUIB of the device-unit on which the
I/0 function is being performed.

ddata$p POINTER to the user portion of the device's data

storage area. The device stop procedure can use this
area to store data, if necessary.

If you have a device which guarantees that all I/0 requests will finish
in an acceptable amount of time, you can omit writing a device stop
procedure and use the default procedure supplied with the I/0 System.
The name of this procedure is DEFAULT$STOP. Specify this name in the
Device Information Table. DEFAULT$STOP simply returns to the caller.

DEVICE INTERRUPT PROCEDURE

INTERRUPT$TASK calls the user-written device interrupt procedure to

process an interrupt that just occurred. The format of the call to the
device interrupt procedure is as follows:

CALL device$interrupt(iors$p, duib$p, ddata$p);

where:

device$interrupt Name of the device interrupt procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and

you include this name in the Device Information
Table.

lors$p POINTER to the IORS of the request being
processed. The device interrupt procedure must
update information in this IORS. A value of zero
for this parameter indicates either that there
are no requests on the request queue and the
interrupt is extraneous or that the unit is
completing a seek or other long—-term operation.

duib$p POINTER to the DUIB of the device-unit on which
the I/0 function was performed.

Device Drivers 5-5

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

ddata$p POINTER to the user portion of the device's data
storage area. The device interrupt procedure can
update flags in this data area or retrieve data
sent by the device.

The device interrupt procedure must do the following:

° It must determine whether the interrupt resulted from the
completion of an I/0 function by the correct device-unit.

° If the correct device-unit did send the interrupt, the device
interrupt procedure must determine whether the request is

finished. If the request is finished, the device interrupt
procedure must set the IORS.DONE field to TRUE.

° It must process the interrupt. This may involve setting flags in
the user portion of the data storage area, tranferring data
written by the device to a buffer, or some other operation.

° If an error has occurred, it must set the IORS,STATUS field to
indicate an E$I0 condition and the IORS.UNIT$STATUS field to a
nonzero value. The lower four blts of the field should be set as
indicated in the "IORS Structure" section of Chapter 2. The
remaining bits of the field can be set to any value (for example,
the iSBC 204 and 206 device drivers return the device's result
byte in the remainder of this field). It must also set the
IORS.DONE field to TRUE, indicating that the request is finished
because of the error.

. If no error has occurred, it must set the IORS.STATUS field to
indicate an E$0K condition.

PROCEDURES THAT iRMX"™ 86 RANDOM ACCESS DRIVERS MUST CALL

There are several procedures that random access drivers in iRMX 86
applications can call under certain well-—-defined circumstances. They are
NOTIFY, SEEK$COMPLETE, and procedures for the long—-term operations
(BEGIN$LONG$TERMOP, ENDLONGS$TERM$OP, and GET$IORS).

NOTIFY PROCEDURE

Whenever a door to a flexible diskette drive is opened or the STOP button
on a hard disk drive 1s pressed, the device driver for that device must
notify the I/O System that the device is no longer available. The device
driver does this by calling the NOTIFY procedure. When called in this
manner, the I/0O System stops accepting I/0 requests for files on that
device unit. Before the device unit can again be available for I/O
requests, the application must detach it by a call to
A$PHYSICALS$DETACH$DEVICE and reattach it by a call to
A$PHYSICAL$SATTACH$DEVICE. Moreover, the application must obtain new file
connections for files on the device unit.

Device Drivers 5-6

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

In addition to not accepting L/0O requests for files on that device unit,
the I/0 System will respond by sending an object to a mailbox. For this
to happen, however, the object and the mailbox must have been established
for this purpose by a prior call to A$SPECIAL, with the spec$func

argument equal to FS$NOTIFY (2). (The A$SPECIAL system call is described
in the BASIC I/O SYSTEM REFERENCE MANUAL.) The task that awaits the

object at the mailbox has the responsibility of detaching and reattaching

the device unit and of creating new file connections for files on the
device unit.

The syntax of the NOTIFY procedure 1s as follows:

CALL NOTIFY(unit, ddata$p);

where:
unit BYTE containing the unit number of the unit on the
device that went off-line.
ddata$p POINTER to the user portion of the device's data

storage area. This is the same pointer that is passed
to the device driver by way of either the device$start
or the device$interrupt procedure.

SEEK$COMPLETE PROCEDURE

In most applications, it is desirable to overlap seek operations (which

can take relatively long periods of time) with other operations. To
facilitate this, a device driver receiving a seek request can take the
following actions in the following order:

1. The device start procedure starts the requested seek operation.

2. Depending on the kind of device, either the device start

procedure or the device interrupt procedure sets the DONE flag in
the IORS to TRUE (OFFH).

® Some devices send only one interrupt in response to a seek
request —— the one that indicates the completion of the
seek. If your device operates in this manner, the device
start procedure sets the DONE flag to TRUE (OFFH) immediately.

° Some devices send two interrupts in response to a seek
request —— one upon receipt of the request and one upon
completion of the seek. If your device operates in this
manner, the device start procedure leaves the DONE flag in
the IORS set to FALSE (0).

When the first interrupt from the device arrives, the device
interrupt procedure sets the DONE flag to TRUE (OFFH).

Device Drivers 5-7

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

3. When the interrupt from the device arrives (the one that
indicates the completion of the seek), the device interrupt
procedure calls the SEEK$COMPLETE procedure to signal the
completion of the seek operation,

This process enables the device driver to handle 1/0 requests for other
units on the device while the seek is in progress, thereby increasing the
performance of the I/O System.

The syntax of the call to SEEK$COMPLETE is as follows:

CALL SEEK$COMPLETE(unit, ddata$p);

where:
unit BYITE containing the number of the unit on the device
on which the seek operation 1s completed.
ddata$p POINTER to the user portion of the device's data

storage area. This 1s the same pointer that the
random access support routines passes to the device
start and device interrupt procedures.

Note that if your device driver calls the SEEK$COMPLETE procedure when a
seek operation 1s completed, the CYLINDER$SIZE field of the Unit
Information Table for the device unit should be configured greater than
zero. On the other hand, if the driver does not call SEEK$COMPLETE, then
CYLINDER$SIZE must be conflgured to zero.

PROCEDURES FOR QTHER LONG--TERM OPERATIONS

The iRMX 86 Operating System provides three procedures which device
drivers can use to overlap long-term operations (such as tape rewinds)
with other I/0 operations. The procedures are BEGIN$LONG$TERM$OP,
END$LONG$TERM$OP, and GET$IORS. These procedures are intended
specifically for use with devices that do not support seek operations
(such as tape drives).

BEGIN$LONG$TERM$OP Procedure

The BEGIN$LONG$TERM$OP procedure informs the random access support
routines that a long-term operation is in progress, and that the support
routines do not have to wait for the operation to complete before
servicing other units on the device. Calling BEGIN$LONG$TERM$OP allows
the controller to service read and write requests on other units of the
device while the long~term operation is in progress.

Device Drivers 5-8

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

To use BEGIN$LONG$TERM$OP, the device driver receiving the request for
the long-term operation should take the following actioms:

1. The

device start procedure starts the long—term operation.

2. Depending on the kind of device, either the device start
procedure or the device interrupt procedure sets the DONE flag in

the

3. The

IORS to TRUE (OFFH).

Some devices send only one interrupt in response to a request

for a long—term operation —— the one that indicates the
completion of the operation. If your device operates in this

manner, the device start procedure sets the DONE flag to TRUE
(OFFH) immediately.

Some devices send two interrupts in response to a request for
a long-term operation —- one upon recelpt of the request and
one upon completion of the operation. If your device
operates in this manner, the device start procedure leaves
the DONE flag in the IORS set to FALSE (0). When the first
interrupt from the device arrives, the device interrupt
procedure sets the DONE flag to TRUE (O0FFd).

procedure that just set the DONE flag to TRUE (either the

device start or device interrupt procedure) calls
BEGIN$LONGS$TERMS$OP.

The syntax of the call to BEGIN$LONG$TERM$OP is as follows:

CALL BEGIN$LONG$TERM$OP(unit, ddata$p);

where:

unit

ddata$p

BYTE containing the number of the unit on the device
which 1is performing the long—-term operation.

POINTER to the user portion of the device's data
storage area. This is the same pointer that the
random access support routines passes to the device
start and device interrupt procedures.

If your driver calls BEGIN$LONG$TERM$OP, it must also call

END$LONG$TERM$OP when the device sends an interrupt to indicate the end
of the long-term operation.

END$LONG$TERM$OP Procedure

The END$LONG$TERMS$OP procedure informs the random access support routines

that a long-term operation has completed. A driver that calls
BEGINSLONGSTERM$OP must also call ENDSLONG$TERM$OP or the driver cannot

further access the unit that performed the long-term operation.

Device Drivers 5-9

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

Specifically, when the unit sends an Interrupt indicating the end of the
long-term operation, the device interrupt procedure must call
ENDSLONGSTERMSOP.

The syntax of the call to ENDSLONGSTERMSOP is as follows:

CALL ENDSLONGSTERMS$OP(unit, ddata$p);

where:
unit BYTE containing the number of the unit on the device
which performed the long-term operatione.
ddataSp POINTER to the user portion of the device's data

storage area. This is the same pointer that the
random access support routines passes to the device
start and device interrupt procedures.

GETSIORS Procedure

Long—term operations on some units involve multiple operations. For
example, performing a rewind on some tape drives requires you to perform
a rewind and a read file mark. The GET$IORS procedure allows your driver
procedures to handle this situation without forcing vou to write a custom
driver for each device that is different,

GETSIORS allows your driver procedure to obtain the token of the IORS for
the previous long-term request, so that it can modify the IORS to
initiate new I/0 requests. The IORSSP that INTERRUPTSTASK passed to the
device interrupt procedure is set to zero (for units busy performing a
seek or other long~term operation). Therefore, the driver can only
access the IORS in this manner.

To use GETSIORS, the device driver performing the long-term operation
should take the following actions:

le¢ The device driver starts the loung-term operation and calls
BEGINSLONGSTERMSOP in the usual manner (as described in the
"BEGINSLONGSTERMSOP Procedure" section)e.

2. When the unit sends an interrupt indicating the end of the
long-term operation, the device interrupt procedure calls
GETSIORS to obtain the IORS.

3. The device interrupt procedure modifies the FUNCT and SUBFUNCT
fields of the IORS to specify the next operation to perform. It
also sets the DONE flag to FALSE (0).

4, The device interrupt procedure calls ENDSLONGSTERMSOPERATION.

The syntax of the call to GETSIORS is as follows:

iors$base = GETSIORS(unit, ddata$p);

Device Drivers 5-10

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

where:

lors$base SELECTOR in which the random access support
routines return the base portion of the IORS.
Use the PL/M-86 built-in procedure BUILD$PTR
(specifying an offset of 0) to obtain a pointer
to the IORS.

unit BYTE containing the number of the unit on the
device which performed the long-term operation.

ddata$p POINTER to the user portion of the device's data

storage area. This 18 the same pointer that the
random access support routines passes to the device
start and device interrupt procedures.

FORMATTING CONSIDERATIONS

If you write a random access driver and you intend to use the Human
Interface FORMAT command (for iRMX 86 systems) or the RQ$FORMAT call (for
iRMX 88 systems) to format volumes on that device, your driver routines
must set the status field in the IORS in the manner that the FORMAT
command expects.

When formatting volumes, the FORMAT command issues system calls

(A$SPECIAL or S$SPECIAL) to format each track. It knows that formatting
is complete when it receives an E$SPACE exception code in response. To

be compatible with FORMAT, your driver must also return E$SPACE.

In particular, if your driver must perform some operation on the device

to format it, your device interrupt procedure must set the IORS.STATUS to
E$SPACE after the last track has been formatted.

However, if the device requires no physical formatting (for example, when
formatting is a null operation for that device), your device start

procedure can set IORS.STATUS to E$SPACE immediately after being called
to start the formatting operation.

ek

Device Drivers 5-11

CHAPTER 6
WRITING A CUSTOM
DEVICE DRIVER

Custom device drivers are drivers that you create in their entirety
because your device doesn't fit into either the common or random access
device category, elther because the device requires a priority-ordered
queue, multiple interrupt levels, or because of some other reasons that
you have determined. When you write a custom device driver, you must
provide all of the features of the driver, including creating and
deleting resources, implementing a request queue, and creating an
interrupt handler. You can do this in any manner that you choose as long
as you supply the following four procedures for the I/0 System to call:

An Initialize I/O Procedure. This procedure must initialize the

device and create any resources needed by the procedures in the
driver.

A Finish I/0 Procedure. This procedure must perform any final
processing on the device and delete resources created by the
remainder of the procedures in the driver.

A Queue 1/0 Procedure. This procedure must place the 1/0 requests on
a queue of some sort, so that the device can process them when it
becomes available.

A Cancel I/0 Procedure. This procedure must cancel a previously
queued I/0 request.

In order for the 1/0 System to communicate with your device driver

procedures, you must provide the addresses of these four procedures for
the DUIBs that correspond to the units of the device.

The next four sections describe the format of each of the I/0 System

calls to these four procedures. Your procedures must conform to these
formats.

INITIALIZE 1/0 PROCEDURE

The iRMX 86 1/0 System calls the Initialize I/0 procedure when an
application task makes an RQAPHYSICAL$SATTACH$DEVICE system call and no
units of the device are currently attached. The iRMX 88 I/0 System calls
the Initialize I/0 procedure when an application task attaches or creates
a file on the device and no other files on the device are currently
attached. In either case, the I/0 System calls the Initialize I/O
procedure before calling any other driver procedure.

Device Drivers 6-1

WRITING A CUSTOM DEVICE DRIVER

The Initialize I/0 procedure must perform any initial processing
necessary for the device or the driver. If the device requires an
interrupt task (or region or device data area, in the case of iRMX 86
drivers), the Initialize I1/0 procedure should create it (them).

The format of the call to the Initialize I/0 procedure is as follows:

CALL init$io(duib$p, ddata$p, status$p);

where:

init$io Name of the Initialize I/O procedure. You can use any
name for this procedure as long as it does not
conflict with other procedure names. You must,
however, provide its starting address in the DUIBs of
all device-units that it services.

duib$p POINTER to the DUIB of the device-unit for which the
request is intended. The init$io procedure uses this
DUIB to determine the characteristics of the unit.

ddata$p POINTER to a WORD in which the init$io procedure can
place the location of a data storage area, if the
device driver needs such an area. If the device
driver requires that a data area be associated with a
device (to contain the head of the I/0 queue, DUIB
addresses, or status information), the init$io
procedure should create this area and save 1its
location via this pointer. If the driver does not
need such a data area, the init$io procedure should
return a zero via this pointer.

status$p POINTER to a WORD in which the init$io procedure must
place the status of the initialize operation. If the
operation is completed successfully, the init$io
procedure must return the E$OK condition code.
Otherwise it should return the appropriate exception
code. If the init$io procedure does not return the
E$OK condition code, it must delete any resources that
it has created.

FINISH I/0 PROCEDURE

The iRMX 86 I/0 System calls the Finish I/0 procedure after an
application task makes an RQAPHYSICAL$DETACH$DEVICE system call to
detach the last unit of a device. The iRMX 88 1/0 System calls the
Finish I/0 procedure when an application task detaches or deletes the
last remaining file connection for the device.

The Finish I/0 procedure performs any necessary final processing on the
device. It must delete all resources created by other procedures in the
device driver and must perform final processing on the device itself, if
the device requires such processing.

Device Drivers 6-2

WRITING A CUSTOM DEVICE DRIVER

The format of the call to the Finish I/0 procedure is as follows:

CALL finish$io(duib$p, ddata$t);

where:

finish$io Name of the Finish L/0 procedure. You can specify
any name for this procedure as long as it does not
conflict with other procedure names. You must,
however, provide its starting address in the DUIBs
of all device-units that it services.

duib$p POINTER to the DUIB of the device-unit of the
device being detached. The finish$io procedure
needs this DUIB in order to determine the device on
which to perform the final processing.

ddata$t SELECTOR containing the location of the data

storage area originally created by the init$io

procedure. The finish$io procedure must delete
this resource and any others created by driver

routines.

QUEUE 1/0 PROCEDURE

The I/0 System calls the Queue I/0 procedure to place an 1/0 request on a

queue, so that it can be processed when the device is not busy. The
Queue 1/0 procedure must actually start the processing of the next I/0

request on the queue if the device is not busy. The format of the call
to the Queue I/0 procedure i1s as follows:

CALL queue$io(iors$t, duib$p, ddata$t);

where:
queue$io Name of the Queue I/0 procedure. You can use any
name for this procedure as long as it does not
conflict with other procedure names. You must,
however, provide its starting address for the DUIBs
of all device-units that it services.
iors$t SELECTOR containing the location of an IORS. This

IORS describes the request. When the request is
processed, the driver (though not necessarily the
queue$io procedure) must £11ll in the status fields
and send the IORS to the response mailbox
(exchange) indicated in the IORS. Chapter 2
describes the format of the IORS. It lists the
information that the I/0 System supplies when it
passes the IORS to the queue$io procedure and
indicates the fields of the IORS that the device
driver must f£fill in.

Device Drivers 6-3

WRITING A CUSTOM DEVICE DRIVER

duib$p POINTER to the DUIE of the device-unit for which
the request is intended.

ddata$t SELECTOR containing the location of the data
storage area originally created by the init$io
procedure. The queue$io procedure can place any
necessary information in this area in order to
update the request queue or status fields.

CANCEL 1/0 PROCEDURE

The I/0 System can call the Cancel I/0 procedure in order to cancel one
or more previously queued I/0 requests. The iRMX 88 I/O System does not
call Cancel 1/0, but in the iRMX 86 environment Cancel I/0 is called
under either of the following two conditioms:

. If the user makes an RQAPHYSICAL$DETACH$DEVICE system call and
specifies the hard detach option (refer to the iRMX 86 BASIC I/0
SYSTEM REFERENCE MANUAL for a description of this call). This
system call forcibly detaches all objects associated with a
device-unit.

e If the job containing the task which made an I/0O request is

deleted. The I1/0 System calls the Cancel I/0 procedure to remove
any requests that tasks in the deleted job might have made.

If the device cannot guarantee that a request will be finished within a
fixed amount of time (such as waiting for input from a terminal
keyboard), the Cancel I/0 procedure must actually stop the device from
processing the request. If the device guarantees that all requests
finish in an acceptable amount of time, the Cancel I/0 procedure does not
have to stop the device itself, but only removes requests from the queue.

The format of the call to the Cancel I/O procedure is as follows:

CALL cancel$io(cancel$id, duib$p, ddata$t);

where:
cancel$id Name of the Cancel I/0 procedure. You can use any
name for this procedure as long as it doesn't
conflict with other procedure names. You must,
however, provide its starting address in the DUIBs of
all device—units that it services.
cancel$id WORD containing the id value for the I/0 requests

that are are to be cancelled. Any pending requests
with this value in the cancel$id field of their
IORS's must be removed from the queue of requests by
the Cancel 1/0 procedure. Moreover, the I/0 System
places a CLOSE request with the same cancel$id value
in the queue. The CLOSE request must not be
processed until all other requests with that
cancel$id value have been returned to the I/0 System.

Device Drivers 6-4

WRITING A CUSTOM DEVICE DRIVER

duib$p POINTER to the DUIB of the device—unit for which
the request cancellation is intended.

ddata$t SELECTOR containing the location of the data

storage area originally created by the init$io
procedure. This area may contain the request queue.

IMPLEMENTING A REQUEST QUEUE

Making I/0 requests via system calls and the actual processing of these
requests by I/0 devices are asynchronous activities. When a device is
processing one request, many more can be accumulating. Unless the device
driver has a mechanism for placing I/0 requests on a queue of some sort,
these requests will become lost. The common and random access device
drivers form this queue by creating a doubly linked list. The list is

used by the QUEUE$IO and CANCEL$IO procedures, as well as by
INTERRUPT$TASK.

Using this mechanism of the doubly linked list, common and random access
device drivers implement a FIFO queue for I/0 requests. If you are
writing a custom device driver, you might want to take advantage of the

LINK$FOR and LINK$BACK fields that are provided in the IORS and implement
a scheme similar to the following for queuing I/0 requests.

Each time a user makes an I/0 request, the I/0 System passes an IORS for
this request to the device driver, in particular to the Queue I/0
procedure of the device driver. The common and random access driver
Queue I/0 procedures make use of the LINK$FOR and LINK$BACK fields of the
IORS to link this IORS together with IORSs for other requests that have
not yet been processed.

This queue 1s set up in the following manner. The device driver routine
that is actually sending data to the controller accesses the first IORS
on the queue. The LINK$FOR field in this IORS points to the next IORS on

the queue. The LINK$FOR field in the second IORS points to the third
IORS on the queue, and so forth until, in the last IORS on the queue, the

LINK$FOR field points back to the first IORS on the queue. The LINK$BACK
fields operate in the same manner. The LINK$BACK field of the last IORS
on the queue points to the previous IORS. The LINK$BACK field of the
second to last IORS points to the third to last IORS on the queue, and so
forth, until, in the first IORS on the queue, the LINK$BACK field points
back to the last IORS in the queue. A queue of this sort is illustrated
in Figure 6-1.

The device driver can add or remove requests from the queue by adjusting
LINK$FOR and LINK$BACK pointers in the IORSs.

Device Drivers 6=5

WRITING A CUSTOM DEVICE DRIVER

First tORS Second IORS Third 1O0RS Last IORS
on queue on queue on queue on queue

linkStor linkstor link$tor o O o link$tor 1

‘—‘ linkSback link$back link$back link$back

x-679

Figure 6-1. Request Queue

To handle the dual problems of locating the queue and ascertaining
whether the queue is empty, you can use a variable such as head$queue.
If the queue is empty, head$queue contains the value 0. Otherwise,
head$queue contains the address of the first IORS in the queue.

Kk

Device Drivers 6-6

CHAPTER 7
TERMINAL DRIVERS

Both the 1RMX 86 and iRMX 88 Operating Systems supply a Terminal Handler
that can serve as an interface between the Nucleus and a terminal

device. This interface is minimal and allows limited interaction between
the terminal operator and the Operating System. However, the iRMX 86
Operating System also provides an interface to terminals via the Basic
I/0 System. This interface allows tasks to use the power and convenience
of I/0 System calls when communicating with terminals. To add support
for new terminal controllers in the Basic I/0 System, you can write
device drivers, which provide the software link between the Operating
System software (called the Terminal Support Code) and the terminal.

The iRMX 88 Executive does not support terminal drivers as outlined in
this chapter.

This chapter explains how to write a terminal driver whose capabilities
include handling single-character 1/0, parity checking, answering and
hanging up functions on a modem, and automatic baud rate searching for
each of several terminals. Such a driver is neither common, random
access, nor custom. Consequently, this chapter is more self-contained
than Chapters 5 and 6; it describes the data structures used by terminal
drivers, as well as the procedures that you must provide.

TERMINAL SUPPORT CODE

As in the case of common and random access drivers, the I/0 System
provides the procedures that the I/0 System invokes when performing
terminal I/0. They are known collectively as the Terminal Support Code.
Figure 7-1 shows schematically the relationships between the various
layers of code that are involved in driving a terminal.

Among the duties performed by the Terminal Support Code are managing
buffers and maintaining several terminal-related modes.

Device Drivers 7-1

TERMINAL DRIVERS

APPLICATION TASK

BASIC1/0 SYSTEM

TERMINAL SUPPORT
CODE (TSC)

TERMINAL DRIVER

_/

TERMINAL

0952

Figure 7-1. Software Layers Supporting Terminal I/0

DATA STRUCTURES SUPPORTING TERMINAL 1/0

The principal data structures supporting terminal I/0 are the Device-Unit
Information Block (DUIB), Device Information Table, Unit Information
Table, and the Terminal Support Code (TSC) data structure. These data
structures are defined in the next few paragraphs.

DUIB

This section lists the elements that make up a DUIB for a device~unit
that is a terminal. When creating DUIBs for iRMX 86 applications, code
them in the format shown here (as assembly-language structures). If you
give the iRMX 86 ICU the pathname of your Unit Information Table field,
the iRMX 86 Interactive Configuration Utility (ICU) includes your DUIB
file in the assembly of IDEVCF.A86 (a Basic I/O System configuration
file). IDEVCF.A86 contains the definiticn of the structure.

Device Drivers 7-2

TERMINAL DRIVERS

DEFINE DUIB <
& NAME, ; byte (14)
& 1, ; word — file$drivers - (physical)
& OFBH, ; byte — functs - (no seek)
& 0, ; byte — flags - (not disk)
& 0, ; word - dev$gran - (not random access)
& 0, ; dword - dev$size - (not storage device)
& DEVICE, ; byte - (device dependent)
& UNIT, ; byte = (unit dependent)
& DEV$UNIT, ; word - (device and unit dependent)
& TSINITIO, ; word — init$io - (terminal device)
& TSFINISHIO, ; word — finish$io - (terminal device)
& TSQUEUEIO, ; word = queue$io - (terminal device)
& TSCANCELIO, ; word - cancel$io - (terminal device)
& DEVICE$INFO$P, ; pointer - (address of

s TERMINAL$DEVICE$INFO)
& UNIT$INFOS$P, ; pointer - (address of

; TERMINAL$UNIT$INFO)
& OFFFFH, 3 word - update$timeout - (not disk)
& 0, ; word - num$buffers - (none)
& PRIORITY, ; byte = (I/0 System dependent)
& 0, ; byte — fixed$update - (none)
& O, ; byte — max$buffers - (none)
& RESERVED, ; byte
& >

DEVICE INFORMATION TABLE

A terminal's Device Information Table provides information about a
terminal controller. When creating these tables, code them in the format
shown here (as assembly-language declarations). If you give the iRMX 36
ICU the pathname of your Unit Information Table field, the ICU includes
the gile in the assembly of IDEVCF.A86 (a Basic I/0 System configuration
file).

The fields TERM$INIT, TERM$FINISH, TERM$SETUP, TERM$OUT, TERM$ANSWER,
TERM$HANGUP, and TERM$CHECK contain the names of user—supplied procedures
whose duties are described later in this chapter. When creating the file
containing your Device Information Tables, specify external declarations
for these user-supplied procedures. This allows the code for these
user—supplied procedures to be included in the generation of the I/O
System. For example, 1f your procedures are named TERM$INIT,
TERM$FINISH, TERM$SETUP, TERM$OUT, TERM$ANSWER, TERM$HANGUP, and
TERM$CHECK, include the following declarations in the file containing
your Device Information Tables:

extrn term$init: near
extrn term$finish: near
extrn term$setup: near
extrn term$out: near
extrn term$answer: near
extrn term$hangup: near
extrn term$check: near

Device Drivers 7-3

TERMINAL DRIVERS

Use the following format when coding your Device Information Tables:

TERMINAL$DEVICE$ INFORMATION
DW NUMSUNITS
DW DRIVER$DATA$SIZE
DW STACK$SIZE
DW TERM$INIT
bW TERM$FINISH
DW TERM$SETUP
DW TERM$OUT
DW TERM$ANSWER
DW TERM$HANGUP
bW NUM$INTERRUPTS
INTERRUPTS
DW INTERRUPT$LEVEL
DW TERM$CHECK
. define interrupt$level and
term$check for each interrupt

e we e

. level
DRIVER$ INFO
DB DRIVER$INFO$1
DB DRIVER$INFO$2
where:
NUM$UNITS WORD containing the number of terminals on this

terminal controller.

DRIVER$DATAS$SIZE WORD containing the number of bytes in the
driver's data area pointed to by the
USER$DATA$PTR field of the TSC Data structure.

STACK$SIZE WORD containing the number of bytes of stack
needed collectively by the user—supplied
procedures in this device driver.

TERM$INIT WORD specifying the address of this controller's
user-written terminal initialization procedure.
When creating the Device Information Table, use
the procedure name as a variable to supply this
information.

TERM$FINISH WORD specifying the address of this controller's

user—-written terminal finish procedure. When
creating the Device Information Table, use the

procedure name as a variable to supply this
information.

TERM$SETUP WORD specifying the address of this controller's
user-written terminal setup procedure. When
creating the Device Information Table, use the

procedure name as a variable to supply this
information.

Device Drivers 7-4

TERM$OUT

TERM$ANSWER

TERM$HANGUP

NUM$ INTERRUPTS

INTERRUPT$LEVEL

TERM$CHECK

DRIVER$INFO

TERMINAL DRIVERS

WORD specifying the address of this controller's
user-written terminal output procedure. When
creating the Device Information Table, use the
procedure name as a variable to supply this
information.

WORD specifying the address of this controller's
user-written terminal answer procedure. When
creating the Device Information Table, use the
procedure name as a variable to supply this
information.

WORD specifying the address of this controller's
user-written terminal hangup procedure. When
creating the Device Information Table, use the

procedure name as a variable to supply this
information.

WORD containing the number of interrupt lines
that this controller uses. You must define an
INTERRUPT$LEVEL and TERM$CHECK word for each
interrupt.

WORDs containing the level numbers of the
interrupts that are associated with the terminals
driven by this controller. You must supply one
such word for each interrupt the controller uses.

WORDs specifying the addresses of this
controller's user—written terminal check
procedures. Each TERM$CHECK field specifies the
terminal check procedure for the INTERRUPT$LEVEL
immediately preceding it. When creating the
Device Information Table, use the procedure names
as the variables to supply this information. If
any of the TERM$CHECK words equals zero, there is
no term$check procedure associated with the
corresponding interrupt level. Instead,
interrupts on these levels are assumed to be
output ready interrupts which will cause TERM$OUT
to be called.

BYTES or WORDS containing driver-dependent
information.

Device Drivers 7-5

TERMINAL DRIVERS

NOTE

Usually, terminal drivers are concerned
only with the DRIVER$INFO fields of the
Device Information Table. Therefore, a
terminal driver can declare a structure

of the following form when accessing
this data:

DECLARE
TERMINAL$DEVICES INFO STRUCTURE(
FILLER(nbr$ofgwords) WORD,

DRIVER$INFO$1 BYTE,
DRIVER$ INFO$2 BYTE,
DRIVER$ INFO$N BYTE) ;

where nbrofwords equals 10 +

2% (number of interrupt levels used by
the driver)

You must supply the TERM$INIT, TERM$FINISH, TERM$SETUP, TERM$OUT,
TERM$ANSWER, TERM$HANGUP, and TERM$CHECK procedures. However, if your
terminals are not used with modems, the TERM$ANSWER and TERM$HANGUP
procedures can simply contain a RETURN. Also, if your application does
not need to perform special processing when all of the terminals on the
controller are detached, the TERM$FINISH procedure also can simply
contain a RETURN.,

UNIT INFORMATION TABLE

A terminal's Unit Information Table provides information about an
individual terminal. Although only one Device Information Table can
exist for each driver (controller), several Unit Information Tables can
exist if different terminals have different characteristics (such as baud
rate, duplex, or parity, for example). When creating Unit Information
Tables, code them in the format shown here (as assembly-language
declarations). If you give the iRMX 86 ICU; the pathname of your Unit
Information Table field, the ICU includes the file in the assemgly of
IDEVCF.A86 (a Basic I/0 System configuration file).

Device Drivers 7-6

TERMINAL DRIVERS

TERMINAL$UNIT$INFORMATION

DW
bw
DW
DW
DW
DW
bW
DW
DW
DW

CONN$FLAGS
TERM$FLAGS
INSRATE
OUT$RATE
SCROLL$NUMBER
FLOW$CONTROL*
HIGH$WATERSHMARK*
LOW$WATER$MARK*
FCONCHAR*
FCOFFCHAR*

*These elements apply only to buffered device drivers and are useful
only if you must specify them at configuration time.

where:

CONN$FLAGS WORD specifying the default connection flags for

this terminal. Refer to the iRMX 86 BASIC I/0
SYSTEM REFERENCE MANUAL for more information
about these flags. The flags are encoded as

follows. (Bit O is the low-order bit.)

Bits Value and Meaning

0-1 Line editing control.

0 = Invalid Entry.
1 = No line editing (transparent mode).
2 = Line editing (normal mode).
3 = No line editing (flush mode).
2 Echo control.
0 = Echo.
1 = Do not echo.
3 Input parity control.
0 = Set parity bit to 0.

1l = Do not alter parity bit.
4 Output parity control.
0 = Set parity bit to O.

1 = Do not alter parity bit.

Device Drivers 7-7

TERMINAL DRIVERS

Bits Value and Meaning

5 Output control character control.

0 = Accept output control characters in the
input stream.

1 = Ignore output control characters in the
input stream.

6-7 0SC control sequence control.

0 = Act upon 0SC sequences that appear in
either the input or output stream.

1 = Act upon OSC sequences in the input
stream only.

2 = Act upon OSC sequences in the output
stream only.

3 = Do not act upon any OSC sequences.

8-15 Reserved bits. For future compatibility,
set to O.

TERM$F LAGS WORD specifying the terminal connection flags for
this terminal. Refer to the iRMX 86 BASIC I/0
SYSTEM REFERENCE MANUAL for more information
about these flags. The flags are encoded as
follows. (Bit 0 is the low-order bit.)

Bits Value and Meaning
0 Reserved bit. Set to l.
1 Line protocol indicator.
0 = Full duplex.
1 = Half duplex.
2 Output medium.
0 = Video display terminal (VDT).
1 = Printed (Hard copy).
3 Modem indicator.

0 = Not used with a modem.

1 = Used with a modem.

Device Drivers 7-8

Bits

4-5

6-8

10

TERMINAL DRIVERS

Value and Meaning

Input parity control.

0 =

1 =

Always set parity bit to 0.
Never alter the parity bit.

Even parity is expected on input. Set
the parity bit to O unless the received
byte has odd parity or there is some
other error, such as (a) the received
stop bit has a value of 0 (framing
error) or (b) the previous character

received has not yet been fully
processed (overrun error.)

0dd parity is expected in input. Set
the parity bit to O unless the received
byte has even parity or there is some
other error, such as (a) the received
stop bit has a value of 0 (framing
error) or (b) the previous character
received has not yet been fully
processed (overrun error.)

Qutput parity control.

0 =

1 =

Always set parity bit to O.
Always set parity bit to 1.

Set parity bit to give the byte even
parity.

Set parity bit to give the byte odd
parity.

Do not alter the parity bit.

Translation control.

Do not enable translation.

Enable translation.

Terminal axes sequence control. This
specifies the order in which Cartesian-like
coordinates of elements on a terminal's
screen are to be listed or entered.

0 =

List or enter the horizontal coordinate
first.

Device Drivers 7-9

INSRATE

OUT$RATE

TERMINAL DRIVERS

Bits Value and Meaning

11

12

1 = List or enter the vertical coordinate
first.

Horizontal axis orientation control. This
specifies whether the coordinates on the

terminal's horizontal axls increase or
decrease as you move from left to right

across the screen.

0

Coordinates increase from left to right.

1

Coordinates decrease from left to right.

Vertical axls orientation control. This

specifies whether the coordinates on the
terminal's vertical axis increase or

decrease as you move from top to bottom
across the screen.

0

Coordinates increase from top to bottom.

1 Coordinates decrease from top to bottom.

13-15 Reserved bits. For future compatibility,

set to O.

NOTE

If bits 4-5 contain 2 or 3, and bits
6~8 also contain 2 or 3, then they must
both contain the same value. That is,
they must both reflect the same parity
convention (even or odd).

WORD indicating the input baud rate. The word is

encoded as follows:

0= Invalid.

1

Other = Actual input baud rate, such as 9600.

WORD indicating the output baud rate. The word

is encoded as follows:

Perform an automatic baud rate search.

0

= Use the input baud rate for output.

Other = Actual output baud rate, such as 9600.

Device Drivers 7-10

TERMINAL DRIVERS

Most applications require the input and output
baud rates to be equal. In such cases, use

IN$RATE to set the baud rate and specify a zero
for OUT$RATE.

SCROLL$NUMBER WORD specifying the number of lines that are to
be sent to the terminal each time the operator

enters the appropriate control character
(Control-W is the default).

The Unit Information Table can contain additional data, depending on the

needs of the controller. Refer to the "Additional Information for
Buffered Devices" section of this chapter for information about other
fields you can add to the table.

TERMINAL SUPPORT CODE (TSC) DATA AREA

DUIBs, Device Information Tables, and Unit Iﬁformation Tables are
structures that you set up at configuration time to provide information

about the initial state of your terminals. During configuration, the ICU
assembles these tables into the code segment of the Basic I/0 System.

Therefore, they remain fixed throughout the life of the application
system.

However, the Basic I/0 System also provides a structure in the data

segment (this section calls it the TSC Data Area) which changes to
reflect the current state of the terminal controller and its units.

The TSC Data Area consists of three portions:

° A 30H-byte controller portion which contains information that
applies to the device as a whole.

° A 400H-byte unit portion for each unit in the device. The
NUM$UNITS field in the Device Information Table specifies the
number of unit portions that the Basic I/0 System creates.

) A user portion which the user-written driver routines can use in
any manner they choose. The DRIVER$J}DATA$SIZE field in the
Device Information Table specifies the length of this portion.
One of the fields in the controller portion (USER$DATA$PTIR)
points to the beginning of this field.

Figure 7-2 1illustrates the TSC Data Area graphically.

Device Drivers 7-11

TERMINAL DRIVERS

TSCSDATA

_______________________ 30H bytes
USERSDATASPTR
]
UNITSDATAS1
400H bytes
L]
> >
L]
.
UNITSDATASN
400H bytes
USERSDATA —>

1874

Figure 7-2. TSC Data Area

When the Basic I/0 System calls one of your user—written driver

procedures, it passes, as a parameter, a pointer either to the start of
the TSC Data Area or to the start of one of the unit portions of the TSC

Data Area. Your driver routines can then obtain information from the TSC
Data Area or modify the information there.

The TSC Data Area always starts on a segment boundary Its structure is
as follows:

Device Drivers 7-12

TERMINAL DRIVERS

DECLARE TSC$DATA STRUCTURE(

IOS$DATA$SEGMENT SELECTOR,
STATUS WORD,
INTERRUPTS$TYPE BYTE,
INTERRUPTING$UNIT BYTE,
DEV$INFO$PTR POINTER,
USER$DATAS$PTR POINTER,
RESERVED(34) BYTE,
DECLARE UNIT$DATA(*) STRUCTURE(
UNIT$INFO$PTR POINTER,
TERMINALS$FLAGS WORD,
INSRATE WORD,
OUT$RATE WORD,
SCROLL$NUMBER WORD,
RESERVED1(901) BYTE,
BUFFERED$DEVICE$DATA(1L) BYTE,
RESERVED2(100) BYTE);
where:

IOS$DATA$SEGMENT SELECTOR containing the base address of the 1/0
System's data segment. The I/0 System's terminal
support routine TSINITIO fills in this
information during initialization.

STATUS WORD in which the user-written terminal
initialization procedure must return status
information.

INTERRUPT$TYPE BYTE in which the user-written terminal check
procedure must return the encoded interrupt
type. The possible values are:

0 None

1 Input interrupt

2 Output interrupt

3 Ring interrupt

4 Carrier interrupt

b Delay interrupt
If the terminal check procedure detects that
there are more interrupts to service, the
terminal check procedure adds the following value:

8 More interrupts
to the encoded interrupt type it returns.
For more information about these codes and their
values, see the description of the terminal check
procedure in the next section.

INTERRUPTING$UNIT BYTE in which the user-written terminal check

procedure must return the unit number of the
interrupting device. This value identifies the
unit that is interrupting.

Device Drivers 7-13

DEV$ INFO$PTR

USER$DATA$PIR

UNIT$DATA

UNIT$INFO$PTR

TERMINALS$FLAGS

TERMINAL DRIVERS

POINTER to the Terminal Device Information Table
for this controller. The I/0 System's terminal
support routine TSINITIO fills in this data
during initialization.

POINTER to the beginning of the user portion of
the TSC Data Area. This user area can be used by
the driver, as needed. The 1/0 System's terminal
support routine TSINITIO fills in this pointer
value during initialization.

STRUCTUREs containing unit portions of the TSC
Data Area. There 1s one structure for each unit
(terminal) of the device. When a user attaches
the unit (via the A$PHYSICAL$ATTACH$DEVICE system
call or the ATTACHDEVICE Human Interface command,
for example), the I/0 System's terminal support
routines initialize the appropriate UNIT$DATA
structure. They perform the initialization by
filling in all the fields of the UNIT$DATA
structure with information from the DUIB and the
Unit Information Table.

POINTER to the Unit Information Table for this
terminal. This is the same information as in the
UNIT$INFO$P field of the DUIB for this
device-unit (terminal).

WORD specifying the connection flags for this
terminal. Refer to the iRMX 86 BASIC 1/0 SYSTEM
REFERENCE MANUAL for more information about these
flags. The flags are encoded as follows. (Bit O
is the low-order bit.)

Bits Value and Meaning

0 Reserved bit. Set to l.

1 Line protocol indicator.
0 = Full duplex.
1 = Half duplex.

2 Output medium.
0 = Video display terminal (VDT).
1 = Printed (Hard copy)-.

3 Modem indicator.
0 = Not used with a modem.
1 = Used with a modem.

Device Drivers 7-14

6-8

10

TERMINAL DRIVERS

Value and Meaning

Input parity control.

0=

1 =

Always set parity bit (bit 7) to 0.
Never alter the parity bit.

Even parity is expected on input. Set
the parity bit to O unless the received
byte has odd parity or there is some
other error, such as (a) the receilved
stop bit has a value of 0 (framing
error) or (b) the previous character
received has not yet been fully
processed (overrun error.)

0dd parity is expected in input. Set
the parity bit to O unless the receilved
byte has even parity or there is some
other error, such as (a) the received
stop bit has a value of 0 (framing
error) or (b) the previous character
received has not yet been fully
processed (overrun error.)

Output parity control.

0 =

] =

Always set parity bit to O.
Always set parity bit to 1.

Set parity bit to give the byte even
parity.

Set parity bit to give the byte odd
parity.

Do not alter the parity bit.

Translation control.

Do not enable translation.

Enable translation.

Terminal axes sequence control. This
specifies the order in which Cartesian-like
coordinates of elements on a terminal's
screen are to be listed or entered.

0=

List or enter the horizontal coordinate
first.

Device Drivers 7-15

INSRATE

OUT$RATE

TERMINAL DRIVERS

Bits Value and Meaning

11

12

13-1

1l = List or enter the vertical coordinate
first.

Horizontal axis orientation control. This

specifies whether the coordinates on the
terminal's horizontal axis increase or
decrease as you move from left to right
across the screen.

0

Coordinates increase from left to right.

1 Coordinates decrease from left to right.
Vertical axis orientation control. This

specifies whether the coordinates on the
terminal's vertical axis increase or

decrease as you move from top to bottom
across the screen.

0 Coordinates increase from top to bottom.

1

Coordinates decrease from top to bottom.

5 Reserved bits. For future compatibility,
set to O.

NOTE

If bits 4-5 contain 2 or 3, and bits
6-8 also contain 2 or 3, then they must
both contain the same value. That is,

they must both reflect the same parity
convention (even or odd).

WORD indicating the input baud rate. The word is

encoded as follows:

0= Invalid.

i

1

Perform an automatic baud rate search.

Other = Actual input baud rate, such as 9600.

WORD indicating the output baud rate. The word

is encoded as follows:
0= Use the input baud rate for output.
Other = Actual output baud rate, such as 9600.

Device Drivers 7-16

TERMINAL DRIVERS

Most applications require the input and output
baud rates to be equal. In such cases, use
INSRATE to set the baud rate and specify a zero
for OUT$RATE.

SCROLL$NUMBER WORD specifying the number of lines that are to
be sent to the terminal each time the operator

enters the appropriate control character
(Control-W is the default).

BUFFERED$DEVICES$~ BYTES that contaln additional information that

DATA applies to drivers of buffered devices
(intelligent communications processors that
maintain their own internal memory buffers).
Refer to the "Additional Information for Buffered
Devices" section to see how to access these bytes.

PROCEDURES THAT TERMINAL DRIVERS MUST SUFPPLY

The routines that make up the Basic I/O System's Terminal Support Code
constitute the bulk of the terminal device driver. These routines, in
turn, make calls to device-dependent routines that you must supply. The
following paragraphs describe the routines briefly. Sections that follow
describe the routines in more detail.

A terminal initialization procedure. This procedure must perform any

initialization functions necessary to get the terminal controller
ready to process I/0O requests. TSINITIO calls this procedure.

A terminal finish procedure. This procedure must perform any final

processing so that the terminal controller can be detached.
TSFINISHIO calls this procedure.

A terminal setup procedure. This procedure sets up the terminal in

the proper mode (baud rate, parity, etc.). TSQUEUEIO and the
Terminal Support Code's interrupt task call this procedure.

A terminal answer procedure. This procedure sets the Data Terminal

Ready (DTR) line for modem support. TSQUEUEIO and the Terminal
Support Code's interrupt task call this procedure.

A terminal hangup procedure. This procedure clears the Data Terminal

Ready (DTR) line for modem support. TSQUEUEIO and the Terminal
Support Code's interrupt task call this procedure.

A terminal check procedure. This procedure determines which terminal

sent an interrupt signal and what type of interrupt it is. The
Terminal Support Code's interrupt handler calls this procedure.

A terminal output procedure. This procedure displays a character at

a terminal. TSQUEUEIO and the Terminal Support Code's interrupt task
call this procedure.

Device Drivers 7-17

TERMINAL DRIVERS

A set output waiting procedure. This procedure signals the Terminal
Support Code that a terminal is ready to perform character
transmission and interrupt handling.

When the Terminal Support Code calls these procedures, it passes, as a

parameter, a pointer to the TSC Data Area described in the previous
section., If the called procedure is to perform duties on behalf of all
of the terminals connected to the controller, the Terminal Support Code
passes a pointer to the beginning of the TSC Data Area (the device
portion). On the other hand, if the procedure is to perform duties for

just a particular terminal, the Terminal Support Code passes a pointer to
the unit portion of the TSC Data Area that corresponds to the terminal.

Because the TSC Data Area always starts on a paragraph boundary, a
procedure that receives a pointer to a unit portion of the data area can
construct a pointer to the beginning of the TSC Data Area. It does this
by calling the PL/M-86 builtin procedure BUILD$PTR using the base part of
the pointer it received and an offset of 0. Also, if a procedure, such
as term$check, receives a pointer to the beginning of the TSC data area,
it can calculate where any unit portion of the data area starts by using
the following formula:

unit$data$p = base(of TSC data area):[30H + (unit number * 4004)]

TERMINAL INITIALIZATION PROCEDURE

This procedure must initialize the controller. The nature of this
initialization is device—-dependent. When finished, the terminal
initialization procedure must £ill in the STATUS field of the TSC Data
Area, as follows:

e If initialization is successful, it must set STATUS to E$0K (0).

® If initialization is not successful, it should normally set

STATUS equal to E$IO (2BH). However, it can set the STATUS field
to any other value, in which case the Basic I/0 System returns
that value to the task that is attempting to attach the device.
(The Human Interface ATTACHDEVICE command expects the procedure
to return the E$IO status if initialization is unsuccessful.)

The syntax of a call to the user—-written terminal initialization
procedure is as follows:

CALL term$init(tsc$data$ptr);

Device Drivers 7-18

TERMINAL DRIVERS

where:
term$init Name of the terminal initialization procedure.
You can use any name for this procedure, as long
as it doesn't conflict with other procedure names
and you include the name in the Device
Information Table.
tsc$data$ptr POINTER to the beginning of the TSC Data Area.

TERMINAL FINISH PROCEDURE

The Terminal Support Code calls this procedure when a user detaches the
last terminal unit on the terminal controller. The terminal finish
procedure can simply do a RETURN, it can clean up data structures for the
driver, or it can clear the controller. The syntax of a call to the
user-written terminal finish procedure is as follows:

CALL term$finish(tsc$data$ptr);

where:
term$finish Name of the terminal finish procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.
tscfdatag$ptr POINTER to the beginning of the TSC Data Area.

TERMINAL SETUP PROCEDURE

This procedure "sets up" ome terminal according to the TERMINAL$FLAGS,
IN$RATE, OUT$RATE, SCROLL$NUMBER, and BUFFERED$DEVICE$DATA fields in the
corresponding UNIT$DATA portion of the TSC Data Area. In particular, if
IN$RATE 1s 1, then the term$setup procedure must start a baud rate
search. (The terminal check procedure usually finishes the search and
then fills in IN$RATE with the actual baud rate.) If OUT$RATE is 0, the
terminal setup procedure assumes the output baud rate is the same value
as the input baud rate.

If your terminal controller is a buffered device (an intelligent device

that manages its own internal data buffers), the terminal setup procedure
must also set one of the reserved fields of the UNIT$DATA structure.
Refer to the "Buffered Devices" section in this chapter for more
information.

If your terminal driver supports a modem, the terminal setup procedure

might have to perform additional services. Refer to the "Terminal
Hangup" section for more information.

Device Drivers 7-19

TERMINAL DRIVERS

The terminal setup procedure must call the set output waiting procedure.

Refer to a later section in this chapter for more information on the set
output waiting procedure. The syntax of a call to the user—written

terminal setup procedure is as follows:

CALL term$setup(unit$datasn$ptr);

where:
term$se tup Name of the terminal setup procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.
unit$data$n$ptr POINTER to the terminal's UNIT$DATA structure in

the TSC Data Area.

TERMINAL ANSWER PROCEDURE

This procedure activates the Data Terminal Ready line for a particular

terminal. The Terminal Support Code calls the terminal answer procedure
only when both of the following conditions are true:

° Bit 3 of TERMINAL$FLAGS in the terminal's UNIT$DATA structure
(the modem indicator) is set to 1.

° The Terminal Support Code has received a Ring Indicate signal
(the phone is ringing) or an answer request (via an OSC modem
answer sequence) for the terminal. Refer to the iRMX 86 BASIC
I/0 SYSTEM REFERENCE MANUAL for more information about OSC
sequences.

The syntax of a call to the user-written terminal answer procedure is as
follows:

CALL term$answer(unit$datasnlp);

where:
term$answer Name of the terminal answer procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.
unit$data$n$p POINTER to the terminal's UNIT$DATA structure in

the TSC Data Area.

Device Drivers 7-20

TERMINAL DRIVERS

TERMINAL HANGUP PROCEDURE

This procedure clears the Data Terminal Ready line for a particular

terminal. The Terminal Support Code calls the terminal hangup procedure
only when both of the following are true:

° Bit 3 of TERMINALS$FLAGS in the terminal's UNIT$DATA structure
(the modem indicator) is set to 1.

° The Terminal Support Code has received a Carrier Loss signal (the
phone is hung up) or a hangup request (via an OSC modem hangup

sequence) for the terminal. Refer to the iRMX 86 BASIC 1/0
SYSTEM REFERENCE MANUAL for more information about O0SC sequences.

The syntax of a call to the user-written terminal hangup procedure is as
follows:

CALL term$hangup(unit$datanp);

where:
term$hangup Name of the terminal hangup procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.
unit$data$n$p POINTER to the terminal's UNIT$DATA structure in

the Terminal Support Code data Area.

NOTE

Some modem devices recognize only
carrier detect as an indication that
someone 1s calling and loss of carrier
detect as an indication of hangup.
However, most of these devices require
the Data Terminal Ready line to be
active before they can recognize
carrier detect. For these devices, the
terminal setup procedure must activate
the Data Terminal Ready line.

Likewise, the terminal hangup procedure
must clear the Data Terminal Ready line
and then reactivate it.

Device Drivers 7-21

TERMINAL DRIVERS

TERMINAL CHECK PROCEDURE

The Terminal Support Code calls this procedure whenever an interrupt
occurs, which usually signals that a key on that terminal's keyboard has
been pressed. When called, the terminal check procedure should determine
the kind of interrupt and the interrupting unit, as follows:

1. Check all terminals on the device for an input character.

2. 1If no input character is available, check for a transmitter ready
to send another character.

3. If no transmit character is available, check for a change in
status (such as a ring or carrier interrupt).

When the terminal check procedure finds the first valid interrupt, it
should quit scanning other units. Then it should place the unit number
of the interrupting unit in the INTERRUPTING$UNIT field of the TSC Data
Area and information about the type of interrupt in the INTERRUPT$TYPE
field. The Terminal Support Code interprets values in the INTERRUPT$IYPE
field as follows:

no Interrupt
input interrupt
output interrrupt
ring interrupt
carrier interrupt
delay interrupt

[S VVR Ul]

Also, if the terminal check procedure detects another interrupt while it

is returning information about the first interrupt, it should add the
following value:

8 more interrupts

to the value it places in the INTERRUPT$TYPE field. Adding this value

signals the Terminal Support Code to call the terminal check procedure
again after it processes the current interrupt.

Unless the controller hardware guarantees that an additional interrupt
will be set after one of multiple pending interrupts is serviced, the
terminal check procedure should always signal that more interrupts are
available unless 1t cannot detect interrupts at all. That is, it should
always return one of the following values in the INTERRUPT$TYPE field:

OH no interrupt

9H 1input interrupt plus more
OAH output interrupt plus more
OBH ring interrupt plus more
OCH carrier interrupt plus more
ODH delay interrupt plus more

Device Drivers 7-22

TERMINAL DRIVERS

By returning these values, the terminal check procedure ensures that the

Terminal Support Code calls it again. Otherwise, the driver could lose
characters. If, in fact, there are no more interrupts to service, the

terminal check procedure can return a zero value (no interrupt) the last
time it is called.

If your terminal driver supports a baud rate search to determine the baud

rate of an individual terminal, the terminal check procedure must
ascertain the terminal's baud rate, as follows:

1. The first time the terminal check procedure encounters an input
interrupt for a particular terminal, it should examine the

INSRATE field of that terminal's UNIT$DATA structure to determine
the baud rate.

2. If the IN$RATE field is set to 1 (perform automatic baud rate

search), the terminal check procedure should examine the input
character to determine if it is an uppercase "U". (It can
usually check for 19200, 9600, and 4800 baud in one attempt.)

3. 1If the terminal check procedure determines the baud rate, it

should set the IN$RATE field of the UNIT$DATA structure to
reflect the actual input baud rate.

4, 1f the terminal check procedure cannot determine the baud rate,
it should increment the IN$RATE field in the UNIT$DATA
structure. When the next input interrupt occurs, the terminal
check procedure can try again to determine the baud rate. Refer
to the example terminal driver in Appendix B to see how to
implement a baud rate scan.

5. Place a value of ODH in the INTERRUPT$TYPE field (delay interrupt
plus more). The ODH value tells the Terminal Support Code that a
baud rate scan is in progress. The Terminal Support Code then

waits a few clock cycles and calls the terminal setup procedure
to "set up" the terminal for the new baud rate.

If the terminal check procedure encounters an input interrupt, it must
also return the input character to the procedure that called it,
adjusting the parity bit according to bits 4 and 5 of the TERMINAL$FLAGS
field in the interrupting unit's UNIT$DATA structure. If the interrupt
is not an input interrupt, the terminal check procedure can return any
value.

The syntax of the call to the user-written terminal check procedure is as
follows:

input$char = term$check(tsc$data$ptr)

where:

input$char BYTE in which the terminal check procedure

returns the input character, if the interrupt was
an input interrupt. If the interrupt was not an
input interrupt, this parameter can have any
value.

Device Drivers 7-23

TERMINAL DRIVERS

term$check Name of the terminal check procedure. You can

use any name for this procedure, as long as it
doesn't conflict with other procedure names and

you include the name in the Device Information
Table.

tsc$data$ptr POINTER to the start of the Terminal Support Code
Data Area.

TERMINAL OUTPUT PROCEDURE

The Terminal Support Code calls this procedure to display a character at
a terminal. The Terminal Support Code passes it the character and a
pointer to the terminal's UNIT$DATA structure. If bits 6 through 8 of
the TERMINAL$FLAGS field of the UNIT$DATA structure so indicate, the
terminal output procedure should adjust the character's parity bit and
then output the character to the terminal.

The syntax of the call to the user-written terminal output procedure is
as follows:

CALL term$out(unit$datanp, output$character);

where:

term$out Name of the terminal output procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include the name in the Device Information
Table.

unit$data$n$p POINTER to the terminal's UNIT$DATA structure in
the TSC Data Area.

output$character BYTE containing a character that the terminal

output procedure should send to the terminal.

SET OUTPUT WAITING PROCEDURE

This procedure notifys the Terminal Support Code that the particular
terminal is ready to perform data transmission.

The syntax of a call to the set output waiting procedure is as follows:

CALL xtssetoutput$waiting (unit$datanp);

Device Drivers 7-24

where:

xtssetoutput
$waiting

unit$data$ngptr

TERMINAL DRIVERS

Name of the Terminal Support Code provided

procedure. The terminal setup procedure

that you write must declare
xtssetoutput$waiting as an external procedure
with one pointer parameter.

POINTER to the terminal's UNIT$DATA structure in

the TSC Data Area, This si the same pointer
passed to the terminal setup procedure by the
Terminal Support Code.

ADDITIONAL INFORMATION FOR BUFFERED DEVICES

If you are writing a driver for a buffered communications device (an
intelligent communications processor like the iSBC 544 board that manages

its own buffers of data

separately from the ones managed by the Terminal

Support Code), your driver routines must make use of the
BUFFERED$DEVICE$DATA fields of the UNIT$DATA structure. In so doing,
they should impose the following structure on those 1l bytes:

DECLARE BUFFERED$DEVICE$DATA STRUCTURE(

BUFFERED$DEVICE
FLOW$CONTROL
HIGH$WATER$MARK
LOWSWATER$MARK
FC$ONSCHAR
FCOFFCHAR

where:

BUFFERED$DEVICE

FLOW$CONTROL

HIGH$WATER$MARK

BYTE,
WORD,
WORD,

WORD,
WORD,

WORD) ;

When true, a BYTZ that specifies whether the unit
requires handling as a buffered device.

WORD specifying whether the communications board
sends flow control characters (selected by the
FCONSCHAR and FCOFFCHAR fields, but usually
XON and XOFF) to turn input on and off. The

low-order bit (bit 0) controls this option, as
follows:

0 Disable flow control.
1 Enable flow control.
When flow control is enabled, the communication
board can control the amount of data sent to it

to prevent buffer overflow.

When the communication board's input buffer fills
to contain the number of bytes specified in this

WORD, the board sends the flow control character
to stop input.

Device Drivers 7-25

TERMINAL DRIVERS

LOWSWATER$MARK When the number of bytes in the communication
board's input buffer drops to the number
specified in this WORD, the board sends the flow
control character to start input.

FCONCHAR WORD specifying an ASCII character that the

communication board sends to the connecting
device when the number of bytes in its buffer
drops to the low-water mark. Normally this
character tells the connecting device to resume
sending data.

FCOFFCHAR A WORD specifying an ASCII character that the
communication board sends to the connecting
device when the number of characters in its
buffer rises to the high-water mark. Normally
this character tells the connecting device to
stop sending data.

When a user attaches a unit on any terminal device, the Terminal Support

Code calls the terminal setup procedure. If the device is a buffered
device, the terminal setup procedure must set the BUFFERED$DEVICE field

to TRUE (OFFH). It should also fill in the other fields of the
BUFFERED$DEVICE$DATA structure. In addition, it should enable the

communication device's on-board receiver interrupt (the one for the unit
being attached) so that it can accept data from the connected terminal.

When a user detaches a unit on a buffered device, the Terminal Support
Code sets the BUFFERED$DEVICE field to FALSE (0OH) and again calls the
terminal setup procedure. The terminal setup procedure should disable

the communication device's on-board receiver interrupt (the one for the
unit being detached) to prevent extraneous characters from being received.

To distinguish between an "attach device" and a "detach device”, the

terminal setup procedure should establish its own internal flags (one for
each unit) in addition to the BUFFERED$DEVICE fields. It can use these

flags as follows:

1. 1Initially, the terminal initialization procedure sets the flag of
each unit to FALSE to indicate that no devices are attached.

2. When the Terminal Support Code calls the terminal setup procedure
to attach a unit, both the BUFFERED$DEVICE field and the intermnal
flag are FALSE. The terminal setup procedure recognizes from
this combination that the operation is an "attach device.”

3. The terminal setup procedure performs the "attach device"
operations and sets the internal flag and the BUFFERED$DEVICE
flag to TRUE to indicate that the device is attached.

4. When the unit is detached, the Terminal Support Code sets the
BUFFERED$DEVICE flag to FALSE and calls the terminal setup
procedure. In this situation, the BUFFERED$DEVICE field is
FALSE, but the internal flag is TRUE. 7The terminal setup
procedure recognizes from this combination that the operation is
a "detach device."

Device Drivers 7-26

TERMINAL DRIVERS

PROCEDURES' USE OF DATA STRUCTURES

Table 7-1 helps you sort out the responsibilities of the various

procedures in a terminal device driver. In the table, the following
codes refer to those procedures:

(1) terminal initialization
(2) terminal finish
(3) terminal setup
(4) terminal answer
(5) terminal hangup
(6) terminal check
(7) terminal output

Also, "System" and "ICU" are used in Table 7-1 to indicate the iRMX 86
software and the iRMX 86 Interactive Configuration Utility,
respectively. In addition, "Term$flags” 1is an abbreviation of

"Terminal$flags,” and numbers following immediately after "Term$flags"
are bit numbers in that word.

Device Drivers 7-27

TERMINAL DRIVERS

Table 7-1. Uses of Fields in Terminal Driver Data Structures

Filled in/Changed by Can or Will be Used by

TSC$DATA
I0S$DATA$SEGMENT System (1)-(7)
STATUS (1) System
INTERRUPT$TYPE (6) System
INTERRUPTING$UNIT (6) System
DEV$INFO$PTR System (1)-(7)
USER$DATAS$PTIR System (1)~(7)
UNIT$DATA
UNIT$ INFO$PTR System System
TERM$FLAGS (0-2) System System
TERM$FLAGS (3) System (3)
TERM$FLAGS (4-5) System (3),(6)
TERM$FLAGS (6-8) System (3),(6),(7)
IN$RATE System, (3),(6) (3)
OUT$RATE System (3)
SCROLL$NUMBER System System
BUFFERED$DEVICE$DATA (3) System, (3)
TERMINAL$DEVICE$ INFORMATION
NUM$UNITS ICU System
DRIVER$DATAS$SIZE ICO System
STACK$SIZE ICU System
TERMS$INIT 1CUu System
TERM$FINISH ICU System
TERM$SETUP ICU System
TERM$OUT ICU System
‘TERM$ANSWER ICU System
TERM$HANGUP ICU System
TERM$CHECK ICcO System
INTERRUPTS
INTERRUPT$LEVEL ICU System
TERM$CHECK ICU System
DRIVER$INFO Icu (1)=-(7)

xRk

Device Drivers 7-28

CHAPTER 8
BINDING A DEVICE DRIVER
TO THE /O SYSTEM

You can write the modules for your device driver in either PL/M-86 or the
ASM86 Macro Assembly Language. However, you must adhere to the following
guidelines:

. If you use PL/M-86, you must define your routines as reentrant,
public procedures, and compile them using the ROM and COMPACT
controls.

) If you use assembly language, your routines must follow the
conditions and conventions used by the PL/M-86 COMPACT size
control. 1In particular, your routines must function in the same
manner as reentrant PL/M-86 procedures with the ROM and COMPACT
controls set. The ASM386 MACRO ASSEMBLER OPERATING INSTRUCTIONS

manual describes these conditions and conventions.

USING THE iRMX™ 86 INTERACTIVE CONFIGURATION UTILITY

To use the {RMX 86 Interactive Configuration Utility to configure a
driver that you have written for your application system, you must
perform the following steps:

1. For each device driver that you have written, assemble or
compile the code for the driver.

2. Put all the resulting object modules in a single library, such
as DRIVER.LIB.

3. Ascertain the device numbers and device-unit numbers to use in
the DUIBs for your devices.

a. Use the ICU to configure a system containing all the
Intel-supplied drivers you require.

b. Use the G option to generate that system.

C. Use a text editor to examine the file IDEVCF.A86. Among
other things, this file contains DUIBs for all the
device-~units you defined in your configuration.

d. Look for the DEFINE DUIB structures in the file. Chapter 2
lists the format of these structures. Note the device
number (eighth field) and the device-unit number (tenth
field) of the last DUIB defined in the file.

Figure 8-1 lists part of an IDEVCF.86 file which contains
this information (the file you examine might look
different, depending on how you configure your system).
The arrows in the figure point to the relevant fields.

Device Drivers 8-1

BINDING A DEVICE DRIVER TO THE I/O SYSTEM

e. Use the next available device numbers and device-unit
numbers in your DUIBs.

DEFINEDUIB <
'1p',
00001H,
OF24,
00,

00,

00,

00,
00004H ,
00,
000O0BH,

INITIO,
FINISHIO,

QUEUEIO,
CANCELIO,
DINFOO4,
00,
OFFFFH,
00000H ,
130,
FALSE,
000004,

0

RR RR R RPRRARRRR R R R R R

¢

&
NUMDUIB EQU (THIS BYIE - DUIBTABLE) / SIZE DEFINEDUIB
BIOSCODE ENDS

ZDEVICETABLES(NUMDUIB,0000CH,005H,003E8H)
CODE SEGMENT

ASSUME CS:CGROUP

Figure 38-1. Example IDEVCF.A86 File

Device Drivers 8-2

BINDING A DEVICE DRIVER TO THE I/0 SYSTEM

Create the following:

a.

Use

A file containing the DUIBs for all the device-units you
are adding. Use the DEFINE DUIB structures shown in
Chapter 2. Place all the structures in the same file.
Later, the ICU includes this file in the assembly of the
IDEVCF.A86 file.

A file containing all the device information tables you are

adding. Use the RADEV_DEV_INFO structures shown in Chapter
2 for any random access drivers you add. Later, the ICU
includes this file in the assembly of the IDEVCF.A86 file.

If applicable, any unit information table(s). Use the
RADEV_UNIT INFO structures shown in Chapter 2 for any
random access drivers you add. Add these tables to the
file created in step b.

External declarations for any procedures that you write.
The names of these procedures appear in either the DUIB or
the Device Information Table associated with this device

driver. Add these declarations to the file created in step
b.

the ICU to configure your final system. When doing so:
Answer "yes" when asked if you have any device drivers not
supported by the ICU (this means drivers that you have

written).

As input to the "User Devices" screen, enter the pathname

of your device driver library. This refers to the library
built in step 2; for example, :F1:DRIVER.LIB.

Also, enter the information the ICU needs to include your
configuration data in the assembly of IDEVCF.A86. The
information needed includes the following:

° DUIB source code pathname (the file created in step
4a).

] Device and Unit source code pathname (the file created
in steps 4b through 4d).

° Number of user defined devices.

° Number of user defined device-units.

The ICU does the rest.

Figure 8-2 contains an example of the "User Devices" screen. The
underlined text represents user input to the ICU. In this example, the
file :F1:DRIVER.LIB contains the object code for the driver, :F1l:DUIB.SRC
contains the source code for the DUIBs, and :F1:DEVINF,.SRC contains the
source code for the Device and Unit Information Tables along with the
necessary external procedure declarations.

Device Drivers 8-3

BINDING A DEVICE DRIVER TO THE I/0 SYSTEM

The code in the DRIVER.LIB file supports one device with two units.

Refer to the iRMX 86 CONFIGURATION GUIDE for instructions on how to use
the ICU.

User Devices

(OPN) Object Code Path Name [1-45 characters]
NONE

(DPN) Duib Source Code Path Name [1-45 characters]

(DUP) Device and Unit Source Code Path WName [1-45 characters]

(ND) Number of User Defined Devices [0-OFFH] 0001H
(NDU) Number of User Defined Device-Units [0-0OFFH] 0001H

Enter Changes [Abbreviations ?/= new_value] : OPN = :F1:DRIVER.LIB
DPN = :F1:DUIB.SRC

: DUP = :F1:DEVINF.SRC
: ND =1
¢t NDU = 2

Figure 8-2. Example User Devices Screen

USING THE iRMX™ 88 INTERACTIVE CONFIGURATION UTILITY

To use the iRMX 88 Interactive Configuration Utility to configure a
driver that you have written for your application system, you must
perform the following steps in the following order:

1. For each driver, assemble or compile the code.

2. When using the ICU:

a. Answer "208", "“215", "common", "random", or "custom" when
asked for device type.

b. When prompted, enter the information for the DUIBs, the

device information tables, and, if applicable, the unit
information table.

c. When prompted for linking information, enter the names of
the appropriate modules.

The ICU does the rest.

*ede

Device Drivers 8-4

APPENDIX A
RANDOM ACCESS DRIVER
SUPPORT ROUTINES

This appendix describes, in general terms, the operations of the random
access device driver support routines. The routines described include:

INIT$ IO
FINISH$IO
QUEUE$ IO
CANCEL$ IO
INTERRUPT$TASK

NOTE

For iRMX 88 systems, these names are
prefixed by "RAD$".

These routines are supplied with the I/0 System and are the device driver

routines actually called when an application task makes an I/0 request to
support a random access or common device. These routines ultimately call

the user-written device initialize, device finish, device start, device
stop, and device interrupt procedures.

This appendix provides descriptions of these routines to show you the
steps that an actual device driver follows. You can use this appendix to
get a better understanding of the I/0O System—supplied portion of a device
driver to make writing the device-dependent portion easier (the random

access driver support routines follow essentially the same pattern). Or
you can use it as a guideline for writing custom device drivers.

INIT$IO PROCEDURE

The iRMX 86 I/0 System calls INIT$IO when an application task makes an

RQ$ASPHYSICALSATTACHS$DEVICE system call and there are no units of the
device currently attached. The iRMX 88 1/0 System calls INIT$IO when an
application task attaches or creates a file on the device and no other
files on the device are attached.

INIT$IO initializes objects used by the remainder of the driver routines,

creates an interrupt task, and calls a user—supplied procedure to
initialize_the device itself.

Device Drivers A-1

RANDOM ACCESS DRIVER SUPPORT ROUTINES

When the I/0 System calls INIT$IO, it passes the following parameters:

. A pointer to the DUIB of the device-unit to initialize

] In the iRMX 86 environment, a pointer to the location where
INIT$IO must return a token for a data segment (data storage

area) that it creates

° A pointer to the location where INIT$IO must return the condition

code

The following paragraphs show the general steps that the INIT$IO

procedure goes through in order to initialize the device.
illustrates these steps. The numbers in the figure correspond to the

step numbers in the text.

INIT!

$10

1
O CREATES DATA OEJECT FOR

DEVICE AND STARTS FILLING IT

Y

2
Q CREATES THE REGION FOR

ACCESSTO

THE QUEUE

A

CREATES THE INTERRUPT TASK

Y

@ CALLS USER-SUPPLIED PROCEDURE

TO INITIALL

ZE DEVICE

Y

<::> RETURNS TO

1/0 SYSTEM

PASSING DATA OBJECT AND
CONDITION CODE

Figure A-1l. Random Access Device Driver Initialize I/0 Procedure

1873

Device Drivers A-2

Figure A-1

RANDOM ACCESS DRIVER SUPPORT ROUTINES

l. It creates a data storage area that will be used by all of the
procedures in the device driver. The size of this area depends
in part on the number of units in the device and any special
space requirements of the device. INIT$IO then begins

initializing this area and eventually places the following
information there:

e The value of the DS (data segment) register.

e A token (identifier) for a region (exchange) --- for mutual
exclusion.

® An array which will contain the addresses of the DUIBs for

the device-units attached to this device. INIT$IO places the
address of the DUIB for the first attaching device unit to
this array.

e A token (identifier) for the interrupt task.

e Other values indicating that the queue 1s empty and the
driver is not busy.

It also reserves space in the data storage area for device data.

2. It creates a region. The other procedures of the device driver
receive control of this region whenever they place a request on
the queue or remove a request from the queue. INIT$IO places the
token for this region in the data storage area.

3. It creates an interrupt task to handle interrupts generated by
this device. INIT$IO passes to the interrupt task a token for
the data storage area. This area is where the interrupt task
will get information about the device. Also, INIT$IO places a
token for the interrupt task in the data storage area.

4, It calls a user-written device initialization procedure that
initializes the device itself. It gets the address of this
procedure by examining the Device Information Table specified in
the DUIB, Refer to Chapter 3 for information on how to write

this initialization procedure.

5. It returns control to the I/O System, passing a token for the

data storage area and a condition code which indicates the
success of the initialize operation.

FINISH$I0 PROCEDURE

The 1RMX 86 I1/0 System calls FINISH$IO when an application task makes an

RQ$ASPHYSICALSDETACH$DEVICE system call and there are no other units of
the device currently attached. The iRMX 83 I/0 System calls FINISH$IO

when an application detaches or deletes a file and no other files on the
device are attached.

Device Drivers A-3

RANDOM ACCESS DRIVER SUPPORT ROUTINES

FINISH$IO deletes the objects used by the other device driver routines,

deletes the interrupt task, and calls a user-supplied procedure to
perform final processing on the device 1itself.

When the I/0 System calls FINISH$IO, it passes the following parameters:
® A pointer to the DUIB of the device-unit just detached
® A selector to the data storage area created by INIT$IO

The following paragraphs show the general steps that the FINISH$IO

procedure goes through to terminate processing for a device. Figure A-2
illustrates these steps. The numbers in the figure correspond to the step

numbers in the text.

l. It calls a user-written device finish procedure that performs any

necessary final processing on the device itself. FINISH$IO gets
the address of this procedure by examining the Device Information

Table specified in the DUIB. Refer to the Chapter 4 for
information about device information tables.

FINISH$0

@ CALLS USER-GUPPLIED

PROCEDURE TC! FINISH UP
PROCESSING ON THE DEVICE

Y

2
<:> DELETES INTERRUPT TASK FOR
DEVICE AND RESETS INTERRUPT

/

@ DELETES REGION AND DATA OBJECTS
USED BY THIS DEVICE DRIVER

Y

RETURNS TO THE 1/0 SYSTEM

1876

Figure A-2. Random Access Device PDriver Finish I/0O Procedure

Device Drivers A-4

RANDOM ACCESS DRIVER SUPPORT ROUTINES

2. It deletes the interrupt task originally created for the device

by the INIT$IO procedure and cancels the assignment of the
interrupt handler to the specified interrupt level.

3. It deletes the region and the data storage area originally
created by the INIT$IO procedure, allowing the operating system
to reallocate the memory used by these objects.

4, 1t returns control to the I/O System.

QUEUE$IO PROCEDURE

The I/0 System calls the QUEUE$I0 procedure to place an I/0 request on a

queue of requests. This queue has the structure of the doubly-linked
list shown in Figure 2-2. If the device itself is not busy, QUEUE$IO
also starts the request.

When the I/0 System calls QUEUE$IO, it passes the following parameters

e A token (identifier) for the IORS
° A pointer to the DUIB

e A token (identifier) for the data storage area originally created
by INIT$IO

The following paragraphs show the general steps that the QUEUE$IO

procedure goes through to place a request on the I1/0 queue. Figure A-3
illustrates these steps. The numbers in the figure correspond to the
step numbers in the text.

1. TIt sets the DONE field in the IORS to OH, indicating that the

request has not yet been completely processed. Other procedures
that start the 1/0 transfers and handle interrupt processing also

examine and set this field.

2. It receives control of the region and thus access to the queue.
This allows QUEUE$IO to adjust the queue without concern that
other tasks might also be doing this at the same time.

3. It places the IORS on the queue.

4. It calls an I/0 System—supplied procedure to start the processing

of the request at the head of the queue. This results in a call
to a user-written device start procedure which actually sends the
data to the device itself. This start procedure is described in
Chapter 5. 1If the device is already busy processing some other
request, this step does not start the data transfer.

5. It surrenders control of the region, thus allowing other routines
to have access to the queue.

Device Drivers A-5

RANDOM ACCESS DRIVER SUPPORT ROUTINES

CANCEL$ IO PROCEDURE

The I/0 System calls CANCEL$IO to remove one or more requests from the
queue and possibly to stop the processing of a request, if it has already
been started. The iRMX 86 I/0 System calls this procedure in one of two
instances:

° If an iRMX 86 user makes an RQAPHYSICAL$DETACH$DEVICE system
call and specifies the hard detach option (refer to the iRMX 86
BASIC I/O SYSTEM REFERENCE MANUAI for information about this
system call). The hard detach removes all requests from the
queue.

QUEUES$10

1
Q SETS STATUS FIELDS

IN THE ICRS

Y

2
O GAINS ACC.ESS

FROM THE REGION

3
C) PLACES THE IORS

ON THE QUEUE

Y

D)
C STARTS THE PROCESSING OF THE REQUEST,
IF THE DEVICE IS-NOT BUSY

A

®
SURRENDERS ACCESS
TO THE REGION

\

RETURNS TO THE I/0 SYSTEM

1878

Figure A-3. Random Access Device Driver Queue I/0 Procedure

Device Drivers A-6

RANDOM ACCESS DRIVER SUPPORT ROUTINES

° If the job containing the task that makes an 1/0 request is
deleted. In this case, the I/0 System calls CANCEL$IO to remove
all of that task's requests from the queue.

When the I/0 System calls CANCEL$IO, it passes the following parameters:
e An ID value that identifies requests to be cancelled
e A pointer to the DUIB
e A token (identifier) for the device data storage area

The following paragraphs show the general steps that the CANCEL$IO
procedure goes through to cancel an I/0 request. Figure A-4 illustrates
these steps. The numbers in the figure correspond to the step numbers in
the text.

1. It receives access to the queue by gaining control of the
region. This allows it to remove requests from the queue without
concern that other tasks might also be processing the IORS at the
same time.

2, It locates a request that is to be cancelled by looking at the
cancel$id field of the queued IORSs, starting at the front of the
queue.

3. If the request that is to be cancelled is at the head of the
queue, that is, the device 1s processing the request, CANCEL$IO
calls a user-written device stop procedure that stops the device
from further processing. Refer to the Chapter 5 for information
on how to write this device stop procedure.

4, 1If the request is finished, or if the IORS is not at the head of
the queue, CANCEL$IO removes the IORS from the queue and sends it
to the response mailbox (exchange) indicated in the IORS.

5. It surrenders control of the region, thus allowing other
procedures to gain access to the queue.
NOTE
The additional CLOSE request supplied
by the I/O System will not be processed

until all other requests with the given
cancel$id value have been dealt with.

Device Drivers A-7

RANDOM ACCESS DRIVER SUPPORT ROUTINES

CANCELSI10

GAINS ACCESS
FROM THE REGION

OBTAIN IORS
WITH SPECIFIED
CANCELS10 VALUE

1S
THE DEVICE YES

CURRENTLY PROCESSING
THE RE70UEST
y

NO CALLS THE USER-WRITTEN
DEVICE STOP PROCEDURE

YES

IS
THE
HEOUES?T DONE
® NO

REMOVES THE IORS
FROM THE QUEUE

SENDS THE IORS
TO THE RESPONSE
MAILBOX

YES

SURRENDERS ACCESS
TO THE REGION

RETURNS TO THE
1/0 SYSTEM

1872

Figure A-4. Random Access Device Driver Cancel I/0 Procedure

Device Drivers A-8

RANDOM ACCESS DRIVER SUPPORT ROUTINES

INTERRUPT TASK (INTERRUPT$TASK)

As a part of its processing, the INIT$IO procedure creates an interrupt
task for the entire device. This interrupt task responds to all
interrupts generated by the units of the device, processes those

interrupts, and starts the device working on the next I/0 request on the
queue.

The following paragraphs show the general steps that the interrupt task

for the random access device driver goes through to process a device
interrupt. Figure A-5 illustrates these steps. The numbers in Figure
A-5 correspond to the step numbers in the text.

l. It uses the contents of the processor's DS reglster to obtain a
token (identifier) for the device data storage area. This is
possible because of the following two reasons:

e When INIT$IO created the interrupt task, instead of

specifying the correct contents of the DS register, it passed
the token of the data storage area as the contents of the
task's DS register.

) When the INIT$IO procedure created the data storage area, it

included the correct contents of the DS register in one of
the filelds.

When the interrupt task starts running, it saves the contents of

the DS register (to use as the address of the data storage area)
and sets the DS register to the value listed in the field of the
data storage area. Thus the task has the correct value in its DS
register, and it has the address of the data storage area. This
is the mechanism that is used to pass the address of the device's

data storage area from the INIT$IO procedure to the interrupt
task.

2, For iRMX 86 systems, it makes an RQSETINTERRUPT system call to
indicate that it is an interrupt task associated with the
interrupt handler supplied with the random access device driver.
It also indicates the interrupt level to which it will respond.

For iRMX 88 systems, it makes an RQ$ELVL system call to enable
the nucleus-provided default interrupt handler.

3. It begins an infinite loop by waliting for an interrupt of the
specified level.

4, Via a region, it gains access to the request queue. This allows
it to examine the first entry in the request queue without
concern that other tasks are modifying it at the same time,

5. It calls a user-written device-interrupt procedure to process the

actual interrupt. This can involve verifying that the interrupt
was legitimate or any other operation that the device requires.
This interrupt procedure is described further in Chapter 3.

Device Drivers A-9

RANDOM ACCESS DRIVER SUPPORT ROUTINES

INTERRUPTSTASK

ADJUSTS DS REGISTER TO OBTAIN
THE DATA OJECTOR FOR THE DEVICE

A

SETS INTERRUPT LEVEL AT WHICH TO
RESPOND AND INDICATES DEVICE
HANDLER

A

WAITS FOR INTERRUPT AT THE
SPECIFIED LEVEL

GAINS ACCESS FROM REGION

Y

CALLS THE USER-WRITTEN INTERRUPT
PROCEDURE TO PROCESS
THE INTERRUPT

1S
THE REQUEST
COMPLETE!?.Y FINISHED

YES

Y

REMOVES THE IORS FROM THE
QUEUE AND SENDS A MESSAGETO
THE RESPONSE MAIL BOX

]

STARTS THE REQUEST AT THE
HEAD OF THE QUEUE

SURRENDERS ACCESS TO THE REGION

18756

Figure A-5. Random Access Device Driver Interrupt Task

Device Drivers A-10

RANDOM ACCESS DRIVER SUPPORT ROUTINES

If the request has been completely processed, (one request can
require multiple reads or writes, for example), the interrupt
task removes the IORS from the queue and sends it as a message to
the response mailbox (exchange) indicated in the IORS. If the

request is not completely processed, the interrupt task leaves
the IORS at the head of the queue.

If there are requests on the queue, the interrupt task initiates
the processing of the next I/0 request by calling the
user-written device-start procedure.

In any case, the interrupt task then surrenders access to the

queue, allowing other routines to modify the queue, and loops
back to wait for another interrupt.

F*kse

Device Drivers A-11

APPENDIX B
EXAMPLES OF
DEVICE DRIVERS

This appendix contains four examples of device drivers. The first
example is a common driver which drives a line printer. The second is a
random access driver, which drives a iSBC 206 disk controller. The third
example is an 8274 terminal driver. (The contents of the INCLUDE files
that these drivers use are listed in the last section of this appendix.)

Note that the names of the procedures in the examples are not
device$start, device$interrupt, etc., as in the text of this manual.
This is because the actual names are placed in the appropriate DUIBs
during configuration.

Table B-1 lists the device driver example file names and the pages on
which they appear.

Table B-1. Device Driver Examples

File Description Page
iprntr.p86 Driver for a line printer B-2
1206ds.p86 Driver for an iSBC 206 disk controller B-6
x8274,p86 8274 terminal driver B-20

INCLUDE files for above device drivers B-39

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER xprntr.pBé

iRMX B4 PL/M-86 V2.3 COMPILATION OF MODULE XPRNTR
OBJECT MODULE PLACED IN sF1:XPRNTR.OBJ
CCMPILER INVOKED BY: :LANG:plaB6 :F1:XPRNTR.P86 COMPACT OPTINIZE(3) ROM PAGEWIDTH(132) NOTYPE

"~
od

$title {'xprntr.p8é’)
/¥

£ xprotr.p8é

#

* This module implements centronix-type interface line ?rinter
driver. It is written as a ‘common’ device driver. It is
+ assumed that the reader is familiar with the 8233 chip.

*

E

LANGUABE DEPENDENCIES:

*/ COMPACT ROM OPTIMIZE(S)

¥/

It

¥ INTEL CORPORATION PROPHIETARY INFORMATION

)

This software is supplied under the terams of a

* license agreesent or nondisclosure agreement with

* Intel Corporation and may not be copied or disclosed
] except in accordance with the terss of that agreeaent.
¥

¥/

pratrs DO
$1nc1ude(:2l:xcomon.lit)
$save nolist
finclude(:flinparan.lit)
$save nolist
$include!sflixnutyp.lit)
$save nolist
$include{:flixiors.lit)
§cave nolict
fincludefsflinduib.lit)
$save nolist
fincludefifloxpratr.lit)
$save nolist
finclude(sflx8255.1it)
$save nolist
finclude{sflixprerr.lit)
$cave nolist
fincludel:f0insleep,ext)
?SAUE MOLIST

4

literal declaration

¥

DECLARE
TABSCHAR LITERALLY 'Q9H’,
SPACE LITERALLY "20H';

Fsubtitle('printersstart$interrupt’)

/
printerdstart/printersinterrupt .)
start/interrupt procedure for the line printer

CALLING SEBUENCE:
CALL printerfstartfinterrupt {iors#p, duibép, ddatafpl;

o e v WK e A

42
43

44

43
44

(o8)

"3

[N 2%)

A d el

P s - (g

[)

¥
¥
+
4
¥
¥
*
4

/

EXAMPLES OF DEVICE DRIVERS

INTERFACE VARIABLES:
iorssp - 1/0 request/result segment pointer
duib$p - pointer to the device-unit info. block
ddata$p - pointer to the device(printer) data segment,
CALLS: None
printerf¥startfinterrupt: PROCEDURE (iors¥p, duihig, ddatai?)
PUBLIC REENTRANT;
DECLARE
{iors$p, duibsp, ddatasp) POINTER;
DECLARE

iors BASED iorsép TOSREDSRES$SEG

duib BASED duib$p DEVSUNIT*INFU#&LGCK;
DECLARE

dinfodp POINTER,

dinfo BASED &1nfo$p PRINTERSDEVICESINFO;
DECLARE

bufferig POINTER,

{char BRASED buffer$p) (1) BYTE;

dinfo$p = duib.device$infodp;

/*
*/ test for spurious interrupts

¥
IF iors$p = 0 THEN
00;

'
/4
*/turn off the interrupt and return
]
QUTPUT (dinfo.Control$port) = INT$DISABLE;
RETURN;
END;
00 CASE (iaors.functl;
/% read #/
00;
iors.status = E$IDDR;
fors.done = TRUE;
END;
/% write #/

0g;
"r¥ ?et the buffer pointer #/
butter$p = iors.buffép;

/% disable printer interrupt #/
QUYPUT{dinfa.Control$part) = INT$DISABLE;

D0 WHILE (iors.actual ¢ iors.count);

/%

* test for printer readz and not paper out. if not ready

*/ or paper out then wait forever.
£

DO WHILE (((INPUT(dinfo.Céport) AND PRINTERSRERDY) = 0) OR

({INPUT (dinfo.Cspart) AND FAPERSOUT) (i V)
/% sleep for 100 nucleus clock intervals #/
CALL ro¥sleep(100, Biors.status);

47
43

49

wn
1251

wn
<4

wn

wn

wn

on o~ O o~

E o] *a tn En

o b bt Cd

S S

EXAMPLES OF DEVICE DRIVERS

/%
£ convert TAB character to a SPACE character if the
*/ printer does not handle thes
e
IF ({char(iors.actual} = TABSCHAR) AND
{{dinfo,tabscontrol} = FALSE))
, THEN char{iors.actual) = SPACE;
*
+ 1's complesent the character and send it to the
*/printer. Port-A is the data port

]
?UTPUT(dinfo.ASpnrt} = NDT(char{iors.actual});
¥

strobe the line printer
this is a way of telling the printer that there is
i/valid data on the bus

*

QUTPUT {dinfo.Control$port)

QUTPUT(dinfo.Cuntraltport)
¥

STROBESON;
STROBESOFF;

'*/ increment the count of chars printed
¥

}ors.actual = jors.actual + 1
¥
tect whether printer acknowledgement bit is set

3/
IF ;ég;UT(dinfu.CSpart) AND CHAR$ACK AND CHARS$ACKS$COMPLETE) = 0

0a;
/¥
t printer didn't acknowledge. Hopefully it has
% started printin%. 50 enable the printer interrupt
¥ and returnfprinter will interrupt when it's donel

H
QUTPUT (dinfo.Control$port) = INTSENABLE;
RETURN;

END;
END; /¢ end of DO WHILE statement #/

[
¥ cet iors.done to THUE
*/ set iors.status to OK
£
iors.status = E$0K;
iors.done = TRUE;
ND}

(¥ seek #/
DO;
1ors,.status = EFIDDR;
iors.done = TRUE;
b;
/+ special ¥/
be;
iors.ctatus = EFIDDR;
iors.done = TRUE;

=y

/¥ attach device #/

"/ initialize the 8255 ¢/
QUTPUT(dinfo.Cantrol$port) = MODESWORD;
iors.status = E$0K;

iors.done = TRUE;
END;

g9
0

71

L P e 4

Ln b pw God

[S Y |

[)

r3

ra

ra

ra

rar3ra (%]

"3

—

EXAMPLES OF DEVICE DRIVERS

/% detach device #/

"jors.status = ES0K;
iors.done = TRUE;
;

/¥ open ¥/
00;

' iors.status = E$0K;
iors.done = TRUE;

3

/% close #/

iors.status = E$QK;
iors.done = TRUE;
END;

END; /% end of D0 CASE statement #/

END printerfstartfinterrupt;

el T T R R T

printers$stop
stop procedure far the line printer

CALLING SEQUENCE:
CALL printer$stop (iors$p, duib¥p, ddatas$pl;

INTERFACE VARIABLES:
ioredp - 1/0 request/result segment pointer
duibfp - pointer to the device-unit info, block
ddatasp - pointer to the device(printer) data segment.

CALLS: None

/

printer$stop: PROCEDURE {iorss$p, duibdp, ddatasp) PUBLIC REENTRANT;

DEC%QRE $p, duib$p, ddatasp) POINTER

iors ui ata POINTER;

DECLARE i ’ ’

iors BASED iors$p IOSREQ$RESHSEG

duib BASED duib¥p DEVfUNITSINFOiéLUCK;

dinfosp POINTER,
dinfo BASED dinfofp PRINTERSDEVICESINFO;

Ix3

turn off the printer interrupt
+ set {ors.dane to TRUE

*/ set iors,.status to E30K

¥/

dinfoép = duib.devicedinfodp;
QUTPUT (dinfao.Cantrol$port) = INTSDISABLE;

]

tors.status = E$0K;
iors.done = TRUE;

END printer$stop;

END wpratr;

EXAMPLES OF DEVICE DRIVERS

PL/M-856 COMPILER ¥204ds.nBb
Module Header

1RMX B6 PL/M-B6 V2.3 COMPILATION OF MODULE X206DS
OBJECT MODULE PLACED IN :F1:X206DS.0BJ
COMPILER INVOKED BY: :LANG:pla86 :F1:X20605.P86 COMPACT OPTIMIZE(3) ROM PAGEWIDTH(132) NOTYFE

$titlel'x206ds.p86")
isubtitle('noduqe Header ")

/%
% x206ds.pBS
#

¥ 1SBC 206 device

&

*/LQNEUAEE DEPENDENCIES: COMPACT ROM QPTIMIZE(3)
¥

{ x206ds: DO;
/%
* INTEL CORPORATION PROFRIETARY INFORMATION
¥
This software is supplied under the terms of a
¥ license agreement or rondisclosure agreesent with
¥ Intel Corporation and may not be copied or disclosed
* except in accordance with the teras of that agreeaent.
*
+/

finclude(sftixcomon.lit)
= $save nolist
Finclude{:flaxnutyp.lit)
= fsave nolist
finclude(sflivparan,iit)
= $cave nolist
fincludelsflixiotyp.lit]
= fsave nolist
$include(sflaixiors.lity
= $gave nolist
Finclude(iflixduib.lit)
= $save nolist
fincludelsflandrinf.lit)
= ¥save nolist
fincludef:flix20bin.1it)
= f$save nolist
finclude(s#tix206dv.1it)
= %save nolist
$includefsflrvexcep.lit)
= fcave nolist
fincludelsflinigexc,lit)
= ¥save nolist
tinclude(:flexradsf.lit)
= $cave nolist

$include(:f1:x206dp.ext!
= fsave nolist

$include(: flsx206dc.ext)
= $save nalist

$include(:fi:x206fa.ext!)
= $¥save nolist

Finclude(:fliynotif,ent}
= fsave nalist

EXAMPLES OF DEVICE DRIVERS

$cubtitle{ 'Local Data’)

£

¥ needfreset array used to determine if device needs to be
i/ reset after an error. Indeved by status.

L 4

DECLARE

need$reset (24) BYTE DATA(C)
FALSE, /% Successful completion #/
TRUE /¢ ID field miscompare #/
FALSE, /+ Data field CRC error #/
FALSE, /% special for incorrect result$type #/
TRUE /% Seek error ¥/
FALSE,
FALSE,
FALSE,
FALSE, /% Illegal Record Addresc #/
FALSE,
FALSE, /% 1D Field CRC error #/
TRUE, /% Protocol error #/
TRUE /# [llegal Cylinder Address #/
FALSE,
FALSE, /% Record not found #/
FALSE, /+ Data Mark Missing #/
FALSE, /% Format Error ¢/
FALSE, /% Write Protected #/
FALSE,
TRUE /% Write Error ¥/
FALSE,
FALSE,
FALSE
FaLSE} s /% Drive Not Ready #/

/%

¥ unitfstatus ic used to set unit status fiald in iore.
Indesed by status,

¥/
DECLARE
unityctatus(24) BYTE DATAC
TO$UNCLASS, /% Successful completion #/
[0$50FT, /% 1D field miscompare ¥/
10$50FT, /# Data field CRC error #/
10$HARD, /% special for incorrect resultstype #/
IG!SOFTl /% Seek errar #/
IG$UNCLRSS,
[O$UNCLASS,
TO$UNCLASS,
TO$HARD /% 1llega! Recrord Address #/
IGFUNCLASS,
10430FT, /% 1D Field CRC error #/
[0$50FT, /% Protocol error #/
TO$HARD /% [llegal Cylinder Address &/
10$UNCLASS,
1045CFT, /% Record not found #/
I0$S0FT /% Datz Mark Missing &/
10450FT /% Format Error #/
105WRPRAT /% Write Protected #/
10SUNCLASS,
TO$80FT /% drite Error ¢/
10$UNCLASS,
T0$UNCLASS,
10$UNCLASS,
TGFOPRINT); /% Drive Not Ready #/
Iz

¥ drivedready is used to find the drive ready bit
+ 1n the drive status,
¥/

B-7

EXAMPLES OF DEVICE DRIVERS

48 | DECLARE
drivefready(4) BYTE DATA(0Z0H,040H,010H,020H);

$subtitlel i206%start’)

It
£ 1206¥start)
: start procedure for the iSBC 204
CALLING SEBUENCE: .
£ CALL i20&¥start (iorsép, duib¥p, ddatadpl;
*
INTERFACE YARIABLES:)
¥ iorsip - 1/0 Request/Result seement pointer
* duibsp - pointer to Device-Unit Information Block
ddatadp - device data seqment pointer,
)
* CALLS:
* 10$206
* foraat$204
* send$206%iopb
¥
2
49 1 1206%start: PROCEDURE(iors$p, duib$p, ddata¥p) PUBLIC REENTRANT;
0 2 DECLARE
iors$p POINTER,
duib$p POINTER,
ddata¥p POINTER:
st 2 DECLARE
iors BASED iors$p [O$REDSRESISER
duib BASED duibfp DEVSUNITslNFﬂiéLGCK,
dinfodp FOINTER,
dinfo BASED dinto¥p I1204$DEVICESINFO,
uinfodp POINTER,
uinfo BASED uinfodp ZQﬂ&iUNITiINFOA
ddata BASED ddatafp IO$PARMSELOCKS206,
hase WaRD,
dummy BYTE;
a2 dinfofp = duib.devicefinfodp;
3 2 base = dinfo.basze;
4 2 vinfofp = duib.unitfintodp;
3§ 2 IF iddata.restpre) THEN
a2 RETURN;
37 2 do¥casedfunct:
DO CASE iars.funct;
/%
£ in the following calls the &ddata is literally
¥ igobdp (i.e., the peinter to the iophi.
%/
M 3 caseiaead:
39 4 " CALL i0$206(base, iorsfp, duib$p, Eddatal;
89 4 END case$read;
6t 3 case;grite:
62 4 " CALL i0$206¢hase, iors$p, duib$p, €ddatal;
83 4 END case$write;
64 3 casegéeek:
65 4 " CALL io$20h(hase, iors¥p, duibsp, @ddatal;
as 4 END cases¥seek;

B (&)

£ P LA NLA AN LN b P [4= cnenoacn

S (NN n o

B S 4 s B d Rk - £

d

EXAMPLES OF DEVICE DRIVERS

cased$spectfunct:

" IF iors.subSfunct = FSFORMATSTRACK THEN
LsECALL foreat$206(base, iorsép, duib$p, eddatal;

Do;
iors.status = ESI0DR;
iors,actual = 03
iors,done = TRUE;

" n

END;
END casefspecs$funct;

case$attachidevice:

' dumay = {duib.dev$gqran = 512);
IF {linput (sub$systeasport) ok 073H) <> OFEH) OR
Bé(xnput(disz
j

iors.status = E$]10;
tors.unitfstatus = IOSOPRINT;
tors.actual = 9
iors.done = TRUE;
TURN;
END;
ddata.inter = interfonfaask;
ddata.instr = restoresop;
IF N?T send$206¥ioph (base, 8ddata) THEN
+

% the board would not accept the ioph
* 50,4,
+/
Do;
iors.status = E$10;

iors.unitbstatus = [0S50FT OR SHL {input {result$byte$port), 8);

tors.actual = 04
iors,done = TRUE:
END;
END caseiat{a:htdevice;

casefdetachfdevice:
: iors.status = E$0K;
igrs.done = TRUE;
EMD caseddetachidevice;

casefopen:

Do;
" iors.status = E$0K;
iors.done = TRUE;
END case$open;

casejciose:
" fors.status = ES0K;
iars.done = TRUE;
END casedclose;

END do$case$funct;
1206%start;

fconfigéport) AND SHLCO10H,SHR{duib.unit,2))) <> 0} ¢ dummy) THEN

EXAMPLES OF DEVICE DRIVERS

fsubtitlel'i206%interrupt”)

1%
£ {Z06%interrupt
¥ interrupt procedure for the 1SBC 204
*
CALLING SEBUENCE:)
¥ CALL 1206¥interrupt(iors$p, duib$p, ddataspl;
¥
INTERFACE YARIABLES:)
¥ iors$p - 1/0 Request/Result segnent pointer
& duib#p - pointer ta Device-Unit Information Block
* ddata¥p - device data segaent pointer,
)
CALLS:
* i206¥start
* send$206%10ph
rg¥sendfnessage
¥
&/
1o 1 120&%interrupt: PROCEDURE (iorsép, duib$p, ddatasp) PUBLIC REENTRANT;
iy 2 DECLARE
1orsép POINTER,
duib$p FOINTER,
ddatasp POINTER;
12 2 DECLARE
1ars BASED iorc#p I0$REDSRESSSER
duib BASED duibsp DEVSUNITSINFOSBLOCK,
dinfosp POINTER,
dinfo BASED dinfosp 1206$DEVICE$INFO
ddata BASED ddatasp 0SPARNSELOCK$20,
tomp BYTE,
hase WORD,
spindle WORD,
status WORD;
13 2 dinfofp = duib.devicefinfofip;
a2 hase = dinfo.base;
1135 2 spindle = shr(duib.unit,, 20} /% 4 units/spindle #/
118 2 IF (input{result$typesport} AND 31 = 0 THEN
117 2 darefint:
IiiH
{18 3 status = inputiresultfbytesport);
19 3 IF ddata.restore THEN
{20 3 did$restore:
00;
21 4 ddata.restore = FALSE;
1224 ddata.statusispindle) = status;
123 4 IF fors$p <> 0 THEM
124 4 restart:
¥
125 3 CALL 120t¥start{iorstp, ddatasp, duibdpl;
2% 3 END rectart;
127 4 RETURN;
128 4 END did$restore;
129 3 ddata,statusispindle) = status;
130 3 IF iors$p <) 0 THEN
S S valid¥iors:
D0
132 4 IF status (> 0 THEN
133 4 badigéatus:

B-10

142

143
144
143
{44

147
148

149
150
154
152

153

134
145

10
lol

ISJ

167
168

wnonanenan wnwnonn

[N - N PR | +3 G s LN LN &= 01 oo o~ o

[S S |

3

O —

EXAMPLES OF DEVICE DRIVERS

iors.status = E$10;
IF (status (= 010H) THEN
tesp = status;
ELSE
temp = shristatus, 4) + QOFH
iors. unxtistatus = un1t$statu=(temp) OR SHL{status,8);
iors,actual =
igrs.done = TRUé
IF needireset(ddatu.status(iors.unit / 4)) THEN
recalibrate:

]

/%

Note: must index drive select

% hits froa iors.unit.

*
ddata.inter = interfon$mask;

ddata.instr = restorefcp;
ddata.restore = sendi’uéilapb‘d’nfu base, @ddatal;
END recalibrate;

END bad¥status;
ELSEDokSStatus:

3
iors.actual = iars.count;
iors.done = TRUE;
END ck¥status;
END validéiors;
END daonetint;
ELSanta*usilnt'
)
temp = xnput(zﬂteristatﬁport)
il spxndle =) 10
T (tenp AND BHL(1, spindlel) () 0 THEN
BOTC found$spindle;
END;

spindle = SHL(spindle,2);
D0 teap=spindle TG sp1ndfe+o,

IF "1Pput\'e5u‘*$bytE$pnrt‘ AND drives$ready(spindle)) =) THEN
£ CALL notifyitemp, ®ddatal;

END status$int;

END 120&¥interrupt;
$subtitle{ i206%init"!

found$spindle:

/%

¥ 1206%init

b init procedure for the 15BC 206

¥

£ CALLING SEQUENCE:

¥ CALL 1Z0&%initiduibdp, ddatasp, statusip);

¥

& INTERFACE VARIABLES:

¥ duibfp - pointer to Device-Unit Information Block

* ddatafp - device data 595ment pointer,

¥ status$p - pointer to WORD indicating status of operatian

¥

¥ CALLS:

* {nane’

¥

¥/

1206%init; PROCEDURE(duib¥p, ddata¥p, statusfp) PUBLIC REENTRANT,

DECLARE

duib$p POINTER,
ddatasp PGINTEp
status¥p QOINTER

B-11

EXAMPLES OF DEVICE DRIVERS

169 2 DECLARE
duib BASED duibs$p DEVSUNITSINFOSBLOCK,
dinfo¥p POINTER,
dinfo BASED dinfofp I204$DEVICESINFO
ddata BASED ddatasp 10$PARMSBLOCKS204,
status BASED status$p WORD;
170 2 DECLARE
i WORD;
{71 2 dinfofp = duib.device$infadp;
/¥
G/Reset 2063 not there or not hard disk ==} Dops!
*
1721 autgut(reset$port) = {;
173 2 status = E30K;
174 2 ddata.restore = FALSE;
175 2 END 1204%init;

176 1 END xZ206ds;

MODULE INFORMATION:

CODE AREA SIZE 03004 768D

CONSTANT AREA SIZE . 0034H 32
YARIABLE &REA SIZE = 0000H D
MAXIMUM STACK SIZIE = 0046H 79

1037 LINES RERD
{) PROGRAM WARNINGS
{ PROGRAM ERRORS

DICTIONARY SUMMARY:

ME®ORY AVAILABLE
MEMGRY USED {18%)
15K SPACE USED

END OF PL/M-B6 COMPILATION

94kR
18KB
OkE D

FL/M-85 COMPILER 4204ic.pBé: 1SBC 206 1/0 Hodule
Madule Header

174X 86 PL/M-86 V2.3 COMPILATION OF MODULE X20610
OBJECT MODULE PLACED IN :F1:X20810,0Bd
COMPILER INVOKED BY: :LANG:plaB6 :F1:X20610.P86 [OMPACT OPTIMIZE(3) ROM PAGEWIDTH{132) NOTYPE

ititle(’xZGéia.ng: 15BC 204 [/0 Module')

$subtitle{ Module Header')
t x204i0: DO;
/%
¥ INTEL CORPORATION PROPRIETARY INFORMATION
¥
¥ This software is supplied under the terms of a
* license agreement or nordisclesure agreement with
¥ Intel Corporation and may not be copled or disclicsed
except in accordance with the terms of that agreesent.
*
¥/

B-12

3 -

EXAMPLES OF DEVICE DRIVERS

/%

This module modifies the 206 parameter block and passes the
¥ address of it ta the iSBC 206.

¥

*/LANGUAGE DEPENDENCIES: COMPACT ROM OPTIMIZE(3)

*

$includelsfi:xcomon.lit)
$save nolist
$include(: flsxnutyp.lit)
$save nolist
fincludef:f1:xiotyp.lit)
$save naolist
$include{:fl:xparam,lit)
$save nalist
finclude (:#1:x206dv. 11t}
$save nolist
$includel:flix206in,1it)
fsave nolist
$include(:fisxiors.lit)
¥save nolist
finclude (:flixduib.lit)
$save nolist
Fincludel:flintrsec.liit}
fsave nolist
$include(:flixexcep.lit)
fsave nolist
finclude{sfisxioexc.lit)
¥save nolist
$includel:fl:v206dc.ext)
$save nolist

1%

i/this nodule also does seeks

%

DECLARE
1206ogcodes (%) BYTE DATA{

READ$QF
WRITESOP,
SEEK$0P

Vo
)

$subtitle! 10#206: iSBC 206 1/0 Module')

¥

% 10$205

¥ 1/0 module (read/write/seek)

¥

CALLING SEQUENCE:

* CALL 10$206 (base, iorc$p, duibdp, iophfp):

]

INTERFACE VARIABLES:

* base - base address of the board.

¥ iorsdp - 1/0 Request/Result segment pointer
* duib$p - pointer to Device-Unit Information Block
* icpbép - pointer to 1/0 parameter hlock.

¥

€ CALLS:

*/ send$2046$1oph thase, €icph)

*

i0¥206: PROCEDURE (base, iors$p, duib$p, iopbfp! REENTRANT PUBLIC;
DECLARE
base WORD
iorssp FOINTER,
duibdp POINTER,
ioph#p POINTER;

EXAMPLES OF DEVICE DRIVERS

33 2 DECLARE

iors
ts

ts$o
duib
iaph

BASED iors$p IDSREQFRESSSER,

TRACK$SECTORSSTRUCT AT (8ts)
BASED duib$p DEVSUNITiIHFBSéLOCK,
H$5ED ioph$p I0SPARM$BLOCKS$206,

platter BYTE,
spindle BYTE,
surface BYTE;

36 2 ts = iors.dev#loc;
372 s?indle = chr{iors.unit, 2); /% & upits/spindle #/
8 2 platter = iors.unit AND 002H; /t {as above) #/
39 2 surface = ts$o.track AND OCOQ1H; /# select surface ¥/
4y 2 iopb.inter = INTERSONSMASK;
4 2 iopb.cyl¥add = shrits$c.track, 1) /% track/2 = cylinder #/
42 2 ioph.instr = 1204$op¥codesiiors. funct) 0R
shl(sfindle, t) OR
shi{platter, & OR
shl (surface, &);
/%
note: the controller only supports 512 or 128 byte sectors
*!sa no checking 1s done.
¥/
43 2 inpb.r¥count = iers.count / duib.devigran; /% divide by sectors size #/
4 2 loph.rec$add = (tsfo.sector + 1) OR
shritsfo.track AND 0200H, 2}; /% {cyl AND Q100H) / 2 &/
45 2 iophb.buffép = iors.buffdp;
4 2 IF NOT send$206%iopbihase, 2ioph! THEN
/%
¥ the board did not accept the iopk so...
&/
47 2 0g;
4 3 tors.status = [0450FT
1 3 iors.actual = 03
W3 iors.done = TRUE;
) B END;
2 2 END 10%206;
RSN END x204i0;
MODULE INFORMATION:
CODE AREA SIZE = 00D3H 213D
CONSTANT ARER SIZE = 0003H 3D
VARIABLE AREA SIIE = O000H 4D
MAYIMUM STACK SIZE = 0022H 34D

505 LINES READ
{0 FROGRAM WARNINGS
i PROGRAM ERRORS

DICTIONARY SUMMARY:
95KH MEMORY AYAILABLE
12KB MEMORY USED (!
kB DISK SPACE USED

END OF PL/M-B4 COMPILATION

2%)

B-14

EXAMPLES OF DEVICE DRIVERS

PL/M-B6 COMPILER x204dc: iSBC 204 parameter handler
Madule Header

iRMX 84 PL/M-B6 V2,3 COMPILATION OF MODULE X2040C
OBJECT MODULE PLACED IN sF1:¥206DC.0BJ
COMPILER INVOKED BY: :LANG:pinBb :F1:Y204DC.F86 COMPACT OPTIMIZE(3) ROM PAGEWIDTH(132) NOTYPE

ftitle('x208dc: i5BC 204 parameter handler’)
$subtitle('Module Header')

{ wZ04de: DO
%
H INTEL CORPORATION PROFRIETARY INFORMATION
*
* This software is supplied under the teras of a
* license agreement or nondisclosure agreement with
¥ Intel Corporation and may not be copied or disclosed
¥ except in accordance with the teras of that -agreesent.
*
¥/
/%

This module contains the commands for the 204 contrecller.
¥

*/LANGUQGE DEFENDENCIES: COMPACT ROM OPTIMIZE(S)
*/

$include{:fl:xcomon.lit)
= $save nolist

fincludeltflrunutyp.lit)
= $save nolist

$includelsflsx206dv,.1it)
= #$save nolist

$subtitle('Send 204 [/0 Parameter Block")

sendsqoéilogb
send the 15BC 206 the address of the parameter bLlock

CALLING SEQUENCE:
CALL send$206%1oph f{base, iapb¥p);

%
*

*

¥

¥

¥

¥

¥ INTERFACE VARIABLES:
* base - hase address of board.

iopbip - 170 parameter block pointer
¥

*

¥

¥

e

701 send$204%ioph: PROCEDURE {bace, iopb#p) BOOLEAN REENTRANT PUBLIC;
2 DECLARE
bace WORD
Logbip POINTER;
12 DECLAR
iopb¥p$o PSOVERLAY AT(@xogbig
ioph BASED iapbép 105PAR $BLOCKS 206,
drive BYTE;
12 2 drive = shriioph.instr AND OQ30H, 4);
13 2 drive = shl(01H,drivel;
t4 2 If fzn#ut'con*rul er¥stat)) = (CGMMANDSBUSY OR drive) THEN
15 2 URN{FALSE});
16 2 putput {lofofffport) = low {iopb¥pfo.offset];

B-15

EXAMPLES OF DEVICE DRIVERS

17 2 IF (ingut(contruller$stat) AND COMMAND$BUSY) <> 0 THEN
18 2 RETURN(FALSE);
/%
*lnade it to here so output rest of iopb address
)
19 2 cutput (lo$segdport) = low (1opb$g$o base)
2 2 output (thse& $port) = high (1upb péa. bazel;
2 2 outhut (hifoftdport) = high (iopbsnfo.offeet);
2 2 RETURN{TRUE;
23 2 END send$20é%iopb;

T END x204dc;

MODULE INFORMATION:

CODE AREA SIZE = 00604 96D
CONSTANT ARER SIZE = 0000H 0D
VARIABLE AREA SIZE = GQ00H D

MAXIMUM STACK SIZE = (0QOCH 120
208 LINES READ

 PROGRAM WARNINGS

0 PROGRAM ERRORS

DICTIONARY SUMMARY:

95kE MEMORY AVAILABLE
JKB MEMORY USED (3%}
OKB DISK SPACE USED

END OF PL/M-B6 COMPILATION

PL/N-B6 COMPILER x204¢m.pBb
Module deader

iRMX 86 PL/M-86 V2.3 COMPILATION OF MODULE XZO&6FM
OBJECT MODULE PLACED IN :F1:X206FN.0BJ
COMPILER INVOKED BY: :LANG:plmB6& :F1:X204FM.PB& COMPACT OPTIMIZE(3) ROM PAGEWIDTH{132) NOTYPE

$title<'x206fm.q86')
$subtitle{ Module Header')

/
1206fn.p86

198C 204 device
formats one track on hard disk

/LANGUAGE DEPENDENCIES: COMPACT ROM OPTIMIZE(S)

{ x206fms DO;

A e A A ok M ok K

B-16

EXAMPLES OF DEVICE DRIVERS

.~
W owe e e M sl dNE vk e

-~

INTEL CORPORATION PROPRIETARY INFORMATION

This software is supplied under the terms of a
license agreeaent or nondisclosure agreesent with
Intel Corporation and may not be copied or disclosed
except in accardance with the teras of that agreement.

S
Mo e om M Wk e e e Wk

~

This module builds the 204 garameter block and passes the
address of it to the i58C 206.

note: this format procedure deduces mawfsectors from the
DEVSUNITSINFOSBLOCK (duib.devigran). it does NOT check to see if
the operator has set the switches on the controller correctly,
sectors may be 128 or 312 bytes.

finclude(sfi:xcomon.lit)
$save nolist
$include{:ftixnutyp.lit)
$save nolist
fincludel:f]:xiotyp.1it)
$save nolist
$includel:¢1:xparam.1it)
$save nolist
finclude(:#1:x206dv.1it)
$save nolist
$include(:f1sx206in.1it)
$save nolist
$include(:flsxradsf.lit)
Fsave nolist
$include{:flixiors.lit)
$save nolist)
$include(:flsxduib.lit)
$save nolist
fincludelsflintrsec.lit)
$s5ave nalist
$include(:f!ixexcep.lit)
$save nolist
$includelsflixioexc.]it)
$save nolist

$include(:flexZibdc. ext)
$save nolist

§subtitlel format¥206: Format track procedure’)

/¥

¥ format$206

] format a track on the 206

)

CALLING SEQUENCE:)

¥ CALL format$204 (base, iors#p, duibfp, iophép);
*

¥ INTERFACE VARIABLES:

* base - hase address of board.

* lorsip - 1/0 Request/Resujt segment pointer
* duibsp - painter to Device-Unit Information Blaock
¥ lopb$p - 1/0 parameter block painter,

]

CALLS:

* build$2065fatstable

*/ send$2046%ioph

¥

B-17

LS e

r3

[L WX Il U WY SN I 2 O |

raArI -3

FAFJ PR

ra

FaFARD

[N

(2%]

Cd] LA G D

3

EXAMPLES OF DEVICE DRIVERS

forpat$206: PROCEDURE (base, iors$p, duib$p, icpb$p) REENTRANT PUBLIC;
DECLARE

base WORD
iorssp POINfER
duxbtp PDINTEP,
Ebtp POINTER;
DECLAR
iors BASED iors$p I0$REQ$RESHSEG,
foruattinfasg QINTER
forsat$info BASED furmalixrfnig FORMATS INFOSSTRUCT,
duib BASED duib$p DEVSUNITHINFCSBLOCK,
ioph BASED 1uBb$g [O$PARMSBLOCK$206,
platter YTE,
spindle 3YTE,
surface BYTE,
naxfsectors BYTE;

toreat$infodp = iors.auxsp;

IF fgaaatfinfu Ltrack$nua ¥ i206$TRACKEMAX THEN
iors,.status = E$SPACE;
iars.actual =
xmsdme-th

RETURN;
END;
?lndle = shriiors.unit, 2); /% 4 units/spindle #/
tatter = iors.unit AND “OSH' /% {as abave) #/
sur‘ace = format$info. track$nue AND 00001H; /+ select surface #/

toph.inter = INTERONMASK OR FORMATSTRACK$ON;
iopb.cyl$add = shr(format¥info.trackdnue, 1); /¥ track/2 = cylinder &/
iopb.rec$add = shrifarnatfinfo.trackénua "anp’ 0200H, 2)3 /+ set if over 254 cylinders &/
ioph.instr = formatiop
shl(spindle, 4) OF
chl{platter, &) OF
shltsurface, 3};

ioph.buf¢$p = @iopb.foraat$table;

IF duib.devigran = 128 THEN
max¥sectars = 363
ELSE
/¥
*lif not 128 then MUST be 312 byte sectors
¥

nandsectors = 12;

CALL build206¢mt¥tablei@ioph.formatitable,
toreat$info.trackdnue,
forpat$infa, truckiln*erleave,
tormat¥info.trackisken,
format$info.filitchar,
max¥sectors);

IF NDT send$Z065iopbihase, 8ioph) THEN
*lthe beard did not accept the ioph so...

D0;
iors.status = [10$50FT;
iors.actual = 03
iors.done = TRUE;

END;

END foreat$206;

B-18

bé
&7

68

—

o

ra

A id Lo 8D

(%)

o] r3

[L0 RN |

o

—

EXAMPLES OF DEVICE DRIVERS

/%

+ build$2068fatstable

* $ill out format table

¥

CALLING SEQUENCE:

CALL build$2043fmtstable (bufsp, tra
*

+ INTERFACE VARIABLES:

L4 bufig - address of foraat tab
¥ trac - track to be formatted
¥ int$fact - interleave factor.

¥ skew - cquew froa ?hysical

* fill¥char - used to fill sectars.
* paxdcectors - maxieum number of sec
¥

% CALLS:

* <pane’

L 3

No error checking on skew, int$fact para

¥ completes & formats the track in a stran
£/

build206fmt¥table: PROCEDURE (butdp, track

DECLARE
bufif POINTER,
track WORD,
int$fact BYTE,
skew BYTE,
fill$char BYTE,
pax¥sectors BYTE;
DECLARE
5 BYTE,
i BYTE;
DECLARE
fmt$tab BASED huf$p (36) STRUCTURE(
recordfaddress BYTE
Fillschar BYTE);

D0 i =0 70 (maxfsectors - 1)

fmttab(i).record$zddress = OFFH;
END fot$tab(i).fillschar = fills$char;
i

5 = ckew MOD maxzfsectors;
DO i =1 T0 mawdecectors;

D0 WHILE fat¥tahis).recordfaddress
s = {5 + {) MOD maxfsectors;
END;

fot¥tab(s).recordyaddress = i}
END 5 = {5 + int$fact} MOD max$sectors;
oLy

END build$204%¢at$table;
END «206fm;

MODULE INFORMATION:

CODE AREA SIZE 0192H
CONSTANT AREA SIZE = 0Q0O0H 0D
YARIABLE AREA SIZE = 000OH o
MAYIMUN STACK SIZE = 0028H 40D
743 LINES READ

0 PROGRAM WARNINGS

(0 PROGRAM ERRORS

DICTIONARY SUMMARY:
96KB MEMORY AVAILABLE
13KB MEMORY USED (13%)
OKB DISK SPACE USED

END OF PL/M-B& COMPILATION

[T

B-19

ck, int$fact, skew, filldchar, maxdcectors);

le.

sector one,

tors

meters; if nonsense, the algoritha
ge manner.

, int$fact, skew, fill¥char,max$sectors) REENTRANT;

¢ UFFH;

EXAMPLES OF DEVICE DRIVERS

PL/N-86 COMPILER x8274: B274 terminal device driver
Module Header

iRMX B& PL/N-86 V2.3 COMPILATION OF MODULE X8274
OBJECT MODULE PLACED IN :F1:X8274,0BJ
COMPILER INVOKED BY: :LANG:plaB6 :F1:XB274.P86 COMPACT OPTIMIZE(3) ROM PAGEWIDTH(132) NOTYPE

ftitle('»8274: 8274 terminal device driver')
$subtitle('Module Header')

/%

¥ TITLE: x8274

¥

* DATE: 27 FED B4

¥

¥ ABSTRACT: This module is the interface between the iRMX 84

Terminal Support, and the 8274 MPSC. It is a

£ rearitten version of 3 scdule of the same name dated
' 20 Jan 83, The regritting was necessary to correct
4 initialization timing problems and to add support for
* various timer devices, i.e. 8233-4, 80130, and 90184-8.
¥

*/LANBUAGE DEPENDENCIES: PLM86 COMPACT ROM

#/

/%

¥ INTEL CORPORATION PROPRIETARY INFORMATION

#

* This software is supplied under the terms of a

* license agreesent or nondisclosure agreesent with

¥ Intel Corporation and maz not te copied or disclosed

¥ except in accordance with the terms of that agreeament.

*

#/

{ x8274: DG;

finclude{:flivcomon.lit)
= f¥save nolist

finclude{sfiixnutyp.lit)
= fgave nolist

$includei:flaviatyp.lit)
= $save nolist

finzlude{:flixexcep.lit)
= #czave nolist

$include{iflixtsson.ext)
$save nolist _
fincludefsflixtstin,ext)
/¥
f
Exterpal Declaration
¥ for timer suppart procedure.

*/
$SAVE NOLIST
$includet:fl:udelay.ext)
$SAVE NOLIST

H o ouan

§subtitle{'Data structures and literals’)
/¥

il 8274 register values
7

B-20

EXAMPLES OF DEVICE DRIVERS

20 1 DECLARE
KRO LITERALLY 'O0H",

WR1 LITERALLY "OLH',
WR2 LITERALLY "02H',
WR3 LITERALLY "O3H',
WR4 LITERALLY '04H",
WR3 LITERALLY "03H",
HR4 LITERALLY "06H",
HR7 LITERALLY "O7H',
RRO LITERALLY 'OOH',
ARl LITERALLY "O1H',
RR2 LITERALLY "02H";
[%
¢ 8274 coamand values
&/
2t DECLARE
NULL _CMD LITERALLY "00H',
NULL VECTOR LITERALLY ’OOH',
RESET EXT INT LITERALLY "10H",
CHANNEL RESET LITERALLY "18H',
ENABLE TNT NEXT RX LITERALLY "20H",
RESET_TY IAT LITERALLY "28H',
ERROR RESET LITERALLY "30H',
END_OF INT LITERALLY "38H';
/%
f/ 8274 write register commands,
*
2 1 DECLARE
WR1_INIT LITERALLY "O14H', /# int on all Rx chars and
+ special conditions,
¥ Farity affecte vector,
t variable vector,
¥ Ty int enable, No
*/ev+ernal int.
¥
WRI_NO_RX _INT LITERALLY "00AH", /¢ dicable Ax interrupts #/
WRLTNOTINT LITERALLY "004H', /# Disable Rx and Tx
*/interrupts
*
WR2_INIT LITERALLY "CO4H", /# non vectared int ¢/
WA INIT LITERALLY "OCIR', /% Rx B bits/char,
‘/P\ enable
¥
WRI RX DISABLE LITERALLY "OCOH",
YR4TINIT LITERALLY "044K", /¢ (6X Iack 8 bit data,
1 stop bit, no parity
¥/
WRS TX_ENABLE LITERALLY "OEAH", /# x 8 bits data,
¥ Ty enable, RTS enable
¥/
WRS_TY DISABLE LITERALLY "QE2H",
WRS_DTR_ON ' LITERALLY 'OE&H',
WR3_DTR_OFF LITERALLY 'D&AH";
i*

*l status register bit masks
*
2301 DECLARE

YECTOR MASK LITERALLY QEQH',
TEST YECTOR CITERALLY 0RSH',
INT_PENDING LITERALLY ‘002H',
NO_INT VECT CITERALLY ‘01CH",
RY"CHAR RDY LITERALLY ‘GO1H°,
T BUFFER_EMPTY LITERALLY “004H',
182745 INFOTSERROR LITERALLY 'D70H":

B-21

1

EXAMPLES OF DEVICE DRIVERS

’
"03H + MORESINTERRUPT'
‘01K + MORESINTERRUPT'
02K + MORESINTERRUFT'
‘)IH + MORESINTERRUPT'

/%
¥ Flags values
*/

DECLARE
EVENSMODE LITERALLY "003H',
QDD$MODE LITERALLY "001RH",
NO$PARITYSMODE LITERALLY "000H',
INSPARITY$HASK LITERALLY "030H",
OUTSPARITYSMASK LITERALLY "ICOH',
STRIPEINFUTSPARITYEMODE LITERALLY "000H",
PASSSINPUTSPARITYSMODE LITERALLY "O1OH',
EVENSINPUTSPARITY$MODE LITERALLY "020H,
ODDSINPUTSPARITYSMODE LTTFFQLLY "NI0H’
SPACESOUTPUTSPARITYSMODE LITERALLY OéﬂH
MARKSCQUTPUTSPARITYSMODE LITERALLY '040H',
EVENSOUTPUTEPARITYSNODE LITERALLY "080H",
ODDSOUTPUTSPARITYSMODE LITERALLY "OCOH',
PASSSOUTPUTHPARITYSNODE LITERALLY "1OOH",
QUTHPARFCHECK LITERALLY '"0BOH';

/%

Baud rate values
+/

DECLARE)
HARDWARESBAUDSSELECT LITERALLY 'O,
AUTO$BAUDSSELECT LITERALLY 37,
DUT$BAUDSSANE LITERALLY 17y

I*

*I interface to terminal suppaort
#

DECLARE
MORESINTERRUFT LITERALLY "0BH',
NOFINTERRUPT LITERALLY "O0H'
DELAYSINTERRUPT LITERALLY
INPUTSINTERRUPT LITERALLY
GUTPUTSINTERRLFT LITERALLY
RING$ INTERRUFT LITERALLY
CARRIERSINTERRUPT LITERALLY

/e
¢ Controller Data Structure
*/

DECLARE
TS$C0ATA LITERALLY

GECLARE
TS$CDATAL LITERALLY
status

"04H + HORESINTERRUFT 'y

"ZTRUCTURE(

TS$CDATAL,
TS$CDATAZ]

"ics$datascegment

interruptdtyqe
tnterruptingdunit

dinfosn

dr1ver$cdatn$p

T55CDATAZ LITERALLY
udatall)

B-22

‘reserved (34)

SEGMENT,
40RD
V'N%ED

FUINTcQ’

BYTE,
BYTE;

T3
17
oL

/%
Unit Data Structure
%/
DECLARE
TS$UDATA LITERALLY "STRUCTURE(
TS$UDATAL,
TS$UDATAZ,
Tasumatas)
DECLARE
TSSUDATAL LITERALLY ‘uinfuig POINTER,
ternfflags 8D,
indrate sDRD,
out$rate WORD,
scrolldnusher WORD,
translation(87) BYTE' ,
TS#UDATAZ LITERALLY "inputfcontrolftable(33) BYTE,
unit$number "y
TS$UDATAT LITERALLY "fill{891) BYTE'
/%
*/ 8274 Device information Structure
*
DECLARE
18274$CONTROLLERSINFD LITERALLY 'STRUCTURE!
182745 INFOS1,
182745 INFO$2,
182745 INFO$3,
8”74$INF0$4
18”74$1NFU$4,
132745 INFO%S,
182745 INFOST) "'y
DECLARE
182745 INFOSL LITERALLY 'Filler{1D) WORD ",
“”"4£‘NFG$‘ LITERALLY ‘ch_a_data_port WORD,
ch_a_status port WORD,
ch b data _port WORD,
ch b status port WORD',
182745INFO$3 LITERALLY 'cha_in_rate_port WORD,
ch”a in_rate cad_port duPD
ch_a_in_rate_counter BYTt,
ch_a_in rate freq DWORD',
182745INFOS4 LITERALLY 'ch_a oul_rate_port WORD,
ch”a_outrate cmd eort Nﬂﬂ“
ch_a out rate count “YTC
ch”a_put rate freq DNORD
182745 INFO$3 LITERALLY 'ch b in_rate_port WOPD,
choblin rate” cmd Ean WORD,
ch b in_rate counter BYTE,
ch b in rate freq DHORD',
182745INFO$S LITERALLY "ch b ouf_rate_port WORD,
ch_b out rate” cmd 9or+ dﬂRD,
th_b_out rate counter BYTE,
ch™b out rate freq DWORD',
132745INFO$7 LITERALLY ‘ch_a_timer _type BYTE,

EXAMPLES OF DEVICE DRIVERS

B-23

ch_b_timer type

BYTE's

4

o
on

38

ra r3

ra

ra

[

OSSO SRl 2 | LS N 5]

rarJa

FIEAFA PR3 Fa

EXAMPLES OF DEVICE DRIVERS

$subtitle('i8274%init")

/

el a i B B N N I BN R R W 3

/

TITLE: 1B274%init

CALLING SERUENCE:
CALL 18274%init (cdatasp);

INTERFACE VARIABLES:
cdatasp POINTER to controllier data

CALLS:
nane

ABSTRACT:
Initializes the 8274 chip.

1827431nit: PROCEDURE (cdata$p) REENTRANT PUBLIC;

[ECLARE
cdatafp POINTER
cdata BASED cdatasp TS$COATA;
DECLARE
1827481nfosp FGINTER
18274%infa BASED 13278infoép i8274$C5NTRGLLERSINFU;
DECLARE
pert WCORD;
X3
¥ Get the configuration info

¥/

"
/%

&/

/%

%/

18274%1nfodp = cdata.dinfodp;

Initialize driver data area {10 bytes in lengthl
CALL setb(OFFH, cdata.driver$cdatasp, 10);

Reset and Initialize the 8274,

DISABLE;
port = 18274%info.ch_a_status_part;

CUTPUT {port) = Ry /# point to WRO #/

CALL delayi{di; /+ insure delay between cutnuts
OUTRUT(port) = CHANNEL RESET; /# reset channel A #/

CALL delay!tfl; /% insure delay betwsen putputs
ENAELE;

DISABLE;
port = 18274%info.ch_b_status_port;

QUTPUT {port) = WRO; /+ point to WRO #/

CALL delay{10}; /¥ insure delay hetwe=' sutputs
OUTPUT {port} = CHANNEL_RESET; /# reset channel A #/

CALL delay(10}; /¥ insure delay between outputs

BLE;

B-24

%/

+/

.74

¥/

3P A I R

FPIRA PRI FI D FANIRIPIEJED

AR PRI PP

rJra

3P PRI R RS Rl S S Ok S | I3 Tard

[SRY NN S S N NG o)

a3

rAF3RI AR

EXAMPLES OF DEVICE DRIVERS

DISABLE;

DUTPUT (port) = /% point to WR4 ¥/

CALL def (10) /% insure delaz between outputs #/
DUTPUT(E t) = WRA_INIT; /*% initialize

CALL deiay(10); /% insure delay between outputs #/
ENABLE;

DISABLE;

OUTPUT(fort) = WR; /% point to WRG #/

CALL delay(10); /% 1nsure delay between outputs #/
DUTPUT(Yort) = HRB TX_ENABLE; /# initialize WR3 - Tx enabled #/
CALL delay(id); /% insure delay between outputs #/
ENABLE;

DISABLE;

DUTPUT\EDrt) = WR3; /¥ goint to WRI #/

CALL delay(ld); /% insure delaa between outputs #/
QUTPUTI furt‘ = WR3_INIT; /¥ initialize WRI - Rx enabled #/
CALL delay(i0); /% insure delay hetween putputs ¥/
ENABLE;

DISABLE;

OUTPUT(gort) = WR1; /¥ point to WRI ¥/

CALL delayild); /% insure dela& betusen autputs #/
QUTRUT(? r*) = WR1_NO_INT; /% initialize WR! - Interrupts disabled #/
CALL delay!id); /¥ insure delay between outputs #/
ENABLE;

DISABLE;

part = 18274%info.ch_a_status_port;

QUTPUT (part) = WR4; /% point to WR4 #/

CALL delay (10} /% insure delay between QUTPUTS #/
UUYPUngcrt = WR4_INIT; /% initialize WR4 #

CALL delay(10}; /% insure delay betueen DUTPUTs #/
ENABLE;

DISABLE;

OUTPUT(port) = WR3; /% point to WRS ¢/

CALL dezuy 10)y /% insure delal between QUTPUTs #/
QUTPUTI ?art) WRS_TY ENABLE; /# initialize WRS - Tx enabled #/
CALL delay{10}; I+ insure delay between OUTPUTS &/
ENABLE;

DISABLE;

QUTPUTS purt‘ = /¥ ppint to MRS &/

CALL delay(19) /% insure delay between OUTPUTs #/
QUTPUT {port) = R3_INIT; /% initialize WR3 - Rx enabled #/
CALL delay(10}; /¥ insure delay between OUTPUTs ¥/
ENABLE;

DISABLE;

QUTPUT fport) = WRts /% point to WRI #/

CALL deluy 10)3 /¥ insure delay between OUTFUTs */
OUTPUTH ?ort) =" 4Rt _MO_INT; /% initialize WRI - Interrugts disabled #/
CALL delayilil; /% insure delay between QUTRUTs #/
ENABLE;

DISABLE;

port = 18274%info.ch_a_status port;

QUTPUT {part) = WRZ; /% point to WRZ ¥/

CALL delay(lO)' /% insure delay hetween GUTPUTs #/
GUTPUTfpnrt = WRZ_INIT; /% initialize WR2 - non vectored int #/
EakkLgelay 01 /% insure delay hetween OUTPUTs #/

B-25

EXAMPLES OF DEVICE DRIVERS

109 2 DISABLE; .
11 2 port = 18274%infa.ch_b_status_part;
1 2 OUTPUT(fort) = WRZ; /% point to WRZ #/
112 2 CALL delay(10); /% insure delay between OUTPUTs #/
13 2 OUTPUT (port) = NULL_VECTOR; /% initialize WR2 - non vectored int #/
14z ENABLE;
/¥
Set the interrrupt vector in RIB to soee value, and then read it
% back to see if the chip is really there, then set to the desired
*/value.
H
t13 2 cdata.status = E$0K;
(s 2 QUTPUT (port) = WR2y /% point to WR2 #/
1y 2 CALL delay(10); /% insure delay between OUTPUTs #/
11a 2 QUTPUT{part) = TEST_VECTOR; /% interrupt vector for RRZB #/
19 2 CALL TIME(10);
20 12 OUTPLT(port) = RRZ; /% point to RR2 #/
121 2 CALL delay{19d}y /% insure delay between DUTPUTs #/
122 1 %zEglNPUT(port) AND VECTOR_MASK) (> (TEST_VECTOR AND VECTOR_MASK)
123 2 tdata.status = E$I0;
(24 2 CALL TIMEC(10);
25 2 QUTPUT (port) = WRZ; /% point to WR2 #/
{26 2 CALL delay{10); /% insure delay between OUTPUTs #/
127 2 QUTPUT{part) = NULL_VECTOR; /% null interrupt vector for RRZB #/
128 2 CALL TIME(10);
3 2 QUTPUT {part) = RAZ; /% point to RRZ #/
13 2 CALL delay(1D); /% insure delay between CUTPUTe #/
12 QEEQINPUTiport) AND VECTOR_MA3K) < 0
132 2 . cdata.status = E§[0;

133

3

END 18274%1in1t;

fsubtitle!('18274%setup’)

TITLE: i8274%cetup

CALLING SEQUENCE:
CALL 182744setupiudatasdp);

INTERFACE VARIABLES:
edatadn POINTER to unit data

CALLS:
none

ABSTRACT:
Initializes the baud rate generator to the configured
rate, and sets up the 8274 for asychronous mode,
divide by 14, 8 data bits, ! stop
bity parity generation per configuration.

e M e AR R A N e e e oK e e MR AR A M

B-26

134

138

139
40

14

142
143
144
145
146
147
144
149
130

ra

ra

3

ra

Ak

PO LN L g Cdi g2k

EXAMPLES OF DEVICE DRIVERS

18274%setup: PROCEDURE (udata$p) REENTRANT PUBLIC;

DECLARE
udatasp POINTER,
udataspsa STRUCTURE!
offset WORD

base SELECTOR)
cdata BASED udatadpbo.base TS$CDATA,

udata BASED udata$p TS$UDATA;
DECLARE
18274%infosp PGINTER
18274%info BASED 18274%infodp iSE?#SCdNTﬂOLLERSINFﬂ;
DECLARE
ch_p POINTER,
th BASED ch_p STRUCTURE
data_port
status gurt
ch_rate_g POINTER,
ch_rate 3ASED ch_rate_p STRUCTURE (
in_port
in_cmd_gort
in_counter
in _freg
auf_port
out_cnd_gnrt
out _counter
out _freq
driverfdatas$ POINTER,

driver$data gASED driverfdatasp STRUCTURE(
th_afindrate
th_afoutdrate
ch_atparit{
th_bfindrate
ch_bsoutfrate

ch_bfparity
DECLARE
temp HYTE,
port 4QRD,
out _cod BYTE,
parity$acde BYTE,
tiperftype BYTE,
ratefcount WORD,
infrate WORD,
outdrate WORD,
parity BYTE;

18274%1nfoép = od
C

ta, dinfo¥n;
driver$data¥s = cda

a

data.driver$cdatafp;

[F udata.unitsnumber = 9 THEN

- ch_p = &18274%info.ch_a_data_port;

ch_rate_p = 8i8274%infa.ch_a in_rate_port;
timer$type = 18274%info.ch a_timer_type;
infrate = driver$data.ch aFindrate;
out$rate = driverfdata.ch aiautSraie;
parity = driver$data.ch_afparity;

END;

ELSE

B-27

AT{Rudata$p!,

WORD,
WORD "1,

HORD,
WORD,
BYTE
OWORD,
WORD,
WORD,
BYTE
DWORD)

WORD,
WORD,
BYTE,
HORD,
4ORD
BYTE;

154
152
153
15

155
154
{57

139

169
161

164

179
180
181
182
183

134
183

g Lod g CAd L Ced

"o

ol B b P Gl g ra

B)

g e Ced Lod g d

d

£ e Cd Lo RO (%)

o b

s
¥
¥

¥/

EXAMPLES OF DEVICE DRIVERS

ch_p = @i8274%info.ch b_data_port;
ch_rate_p = €182745inforch_b in_rate_port;
timer¥type = 18274%info.ch b timer_type;
infrate = driver$data.ch_b¥insrate;
outfrate = driverddata.ch _boutsrate;

- parity = driversdata.ch_b¥parity;
1

out_cad = WRS_TX_ENABLE;

Initialize the input rate generator if the baud rate has changed, or
if a baud rate scan is in progress, and if it's prograsmable.

IF (in$rate (> udata.in$rate) AND
;ﬁgﬂrate.in_freq <€) AND ‘udata.in$rate {) HARDWARE$BAUD$SELECT)

00;
ég udata.infrate <= AUTOSBAUDSSELECT THEN

1
ratefcount = SHR(19200, {udata.infrate-1)#3};
out_cad = WRS_TX_DISABLE;
END;
ELSE
D0;
ratefcount = udata.infrate;

in$rate = udata.in¥rate;
END;

{4

¥ The initial timer value is the timer input frequency
*/divided by the configured baud rate.

*

temp = FALSE;

IF (ck_rate,in freq MOD ratefcount) = SHR{ratedcount,!) THEN
temp = TRUE;

ratefcount = (ch_rate.in_freq / ratefcount);

IF temp THEN
ratescount = ratefcount + I

CALL cet$bauds$ratescountich_rate.in_cad_part,
chrate.in_port,
timer$type,
ch rate.in_counter,
ratescountT;

END;

initialize the output baud rate generator, if there is one, and it has
changed, and it'c programmable.

IF {out$rate <> udata.out$rate) AND
iﬁgnrate.out_freq <Y Q) AND fudata.out$rate <> HARDWARESBAUDSSELECT)
00;

" IF udata.outsrate > QUTSBAUDSSAME THEN

il
' temp = FALSE;
IF (cbﬂgﬁte.out_freq MOD udata.out$rate) »= SHR{udata,out¥rate,!}
|

TRUE;

ap =
= (ch_ra{e.uut_freq ! udata.out¥ratel;

te
ratefcount

B-28

EXAMPLES OF DEVICE DRIVERS

186 4 IF temp THEN
187 4 ratescount = ratefcount + 1
188 4 END;
189 3 outfrate = udata.out$rate;
/%
The initial timer value is the timer output frequency
*/d1v1ded by the configured baud rate.
¥
199 3 CALL set$haud$ratescount(ch_rate.out_cad port,
ch_rate,out porf,
timer$type,
th_rate.out_counter,
rafescount);
191 3 END;
%
*/ figure out the parity control part of the mode word.
#
192 2 IF (udata.termiflags AND CUTSPARITY$MASK) = EVENSCUTPUTSPARITYSMODE THEN
193 2 paritv$mode = EVENSMODE;
194 2 £
Do,
195 3 ¥£E£ud3ta.term$flags AND OUTHPARITY$MASK) = ODDSOUTFUTSPARITY$MODE
1% 3 " parityfaode = DODSMODE;
197 3 SE
parityfncde = NOSPARITY$MODE;
98 3 . END;
{99 2 zort = ch,etatus_porty
/#
¥ 1f a new parity is specified, cet up this 8274 channel accordingly.
#/
2002 IF parityfmode (> parity THEN
0t 2 00;
02 3 parity = parity$mode;
2033 GUTPUT (part) = WR4; /* point to WRY ¢/
204 3 CALL delay(l0i; /% insure delay oetween OUTPUTs #/
W5 3 QUTPUT {gort) = WR4_INIT CR parity$mode;
206 3 CALL TIME{10),
207 3 END;
g 2 UUTPUT(YDrt) = WR3; /% point to WRS #/
209 2 CALL delay (1) /% insure delay between ocutputs #/
0 2 QUTPUT {port) = out_cad;
A2 CALL TIME{10);
212 2 UUTPUT(fnrt) = WR3; /% point to WR3 #/
13 2 CALL delay(ld); /% insure delay between outputs #/
4 2 OUTPUT(fort) = WR3_INIT)
s 2 CALL delay(i0); /% insure delay between outputs #/

B-29

EXAMPLES OF DEVICE DRIVERS

/%
Throw away any chars fros baud rate search,

.74
26 2 D0 WHILE (INPUT(ch.status_purt) AND RX_CHAR_RDY} <} 0;
27 3 temp = INPUT(ch.data_port);
218 3 CALL delay(10); /% insure delay between outputs #/
29 3 END;
%
If the 8274 is ready for output, tell the terminal support
* to send a char.
£/
220 2 CALL delay(10); /% insure delay between outputs #/
221 2 IF (INPUT{ch.status port) AND TX_BUFFER_EMPTY) <) O THEN
222 2 CALL xts¥setsoutputfwaiting(udataspl;
/%
*/Allau Tx and Rx interrupts now,
¥
223 2 CALL delay(l0}; /% insure delay between outputs #/
224 2 QUTPUT (part} = WRL; /% paint to WRI #/
25 2 CALL delay(19); /% insure delav between outputs #/
226 2 QUTPUT {part! = WRI_INIT;
221 12 END 18274%setup;

$subtitle('182744check’)

!
i

TITLE: 182743check

CALLS:
none
INTERFACE VARIABLES:
cdatadp POINTER to controller data

CALLING SEQUENCE:
ch = 18274$check{cdatasnl;

ABSTRACT:

Terafcheck procedure, connected ta 9274 input interrupt.
Gets input char, strips off parity if required, and sets
up flags for terminal support.

Mok A ak o dk W e ok W ok Ak K sk K e e

/
228 1 18274%check: PROCEDURE {cdata$p) BYTE REENTRANT PUBLIC;
29 2 DECLARE

cdatafp FOINTER
cdata BASED cdata$p TSSCDATA;
30 2 DECLARE
iB274%infosp POINTER
18274%infa BASED 13274%infosp 18274$56NTROLLER$INFO,
udata$p POINTER,
udatatpso STRUCTURE

offset WORD
base SELELTOR) AT (dudatasp),
udata BASED udatasp TSSUDATA;

B-30

"
o4
—

232

2

%]

r3 FIrarara

[N AN SRR N |

P L g od g 3 D

Cod i b d

FJ 2

2

DECLARE
h

EXAMPLES OF DEVICE DRIVERS

ch_p FOINTER,
ch™ BASED ch_p STRUCTURE ¢
data_port WORD,
status_port WORD)
ch_rate

_B POINTER,

ch_rate BASED ch_rate_p STRUCTURE ¢
in_port WORD,
;n_cad_gnrt HORD,
in_counter BYTE
in“freq DNORD,
ouf_port WORD,
put_cad_port WORD,
out_counter BYTE
out freq DWORD);

DECLARE

/%
*/

1%

unit BYTE,
vector BYTE,
dumay BYTE,
found$rate BYTE,
i WORD,
char BYTE;

182743info$p = cdata.dinfodp;

find out what caused the interrupt by reading RR2B

OUTPUT(i8274%info.ch_b_status_port) = O0ZH;
CALL delay(S)s /% insure delay between outputs #/
vector = INPU?(i8274$info.ﬁh_b_status_port);
CALL delayi(20); /% insure delay between outputs #/

IF ({vector GND NO_INT_VECT)} = ND_INT VECT) AND
00 {{INPUT(18274%info.ch_a_status _porE) AND INT_PENDING) = 0) THEN
03

" cidata.interruptstype = NOSINTERRUPT;
RETURN char;
END;

ég {vector AND 10H) = 1OH THEN
¥
ch_p = 8i8274%info.ch_a_data_port;
ch_rate_p = #18274%info.ch_a_in_rate_port;
[0 cidata. Interruptingfunit =705
ELsk
DOy
ch_p = 8i82744info.ch b_dat
th_rate_p = 8i8274%info,ch
c$data.Interruptingbunit =
END;

a_port;
b_in_rate_port;
¥

Set ug udatas$p tgﬁgcint to the interrupting units data,
10

* ¢ tha

&/

is, add to the pointer for each unit }

udata$p = €cdata.udata;
udatatpo.offset = udaiaipSo.offset + :
SHL (DOUBLE {cdata.interrupting$unit), 10);

vector = (SHR{vector,2) AND 03H);

B-31

257

258

262

263

264

27

a3
274
275
275
77
278
79

295
296

AL I P

rara

[}

o oo nenon e o b Gl d

~J DO Q0 00 00 O3 00 0D 00 0D 0D O D -~

Q3 -0 -0 -0 00 O

/¥

EXAMPLES OF DEVICE DRIVERS

+ Modify the vector so that Special Rx Condition interrupts
¥ are handled in the Hx Char. Available case,

+/

IF vectar = I THEN

003

&

DO;

]

vector = 2;
DUTPUT{ch.status_port) = ERROR_RESET;

IF vectar =

. D'CALL delay(2);

2 THEN

/# insure delay between outputs

/% Ry Char, available #/

r = INPUT{ch.datz_port};

cha

/¥
h
#
¥

¢ in auto baud rate search, check character for

can identifiable baud rate
{

IF udata.indrate <= AUTO$BAUDSSELECT THEN
char = char AND O7FH;

HliH

IF {char

= 3l

THEN

foundsrate = Oy

ELSE
D0y

ELSE
b

" IF char = &&H “HEN

found$rate = 1;

IF char
foun
ELS
00;
IF ¢
003
/%
¥
*
¥
*/

END;
ELSE
00;

B-3

= T8H THEN
dfrate = 23

har = 0 THEN

Go to next baud rate range and

condition terminal support to call setup

in about 30 as.

udata.infrate = udata.infrate + I

IF udata.infrate AUTOSBAUDSSELECT THEM

udata.in$rate = {;
QUTPUT (ch, status_part] = WAL
CALL delay(10}; 7% insure delay between
QUTPUT{ch.status_port) = WRL NO_RY INT;
CALL delay(10); 7% insure delay belween
cdnta.interrupéstype = DELAYSINTERRUPT;
OUTPUT (ch.status_port) = WR3;
CALL delay{10); 7% insure defa{ between
QUTPUT (ch.status_port} = WE3 RX_DISABLE;
CALL dela;(lO); 7% insure delay between
/% CALL TIME(1G); #/

.74

outputs #/

cutpute ¥/

outputs #/

autputs #/

QUTPUT{i8274%info.ch_2_status_port) = END_OF _INT;

RETURN char;

IF udata.in$rate (> I THEN
DO

rdata.interrupt$type = MORESINTERRUFT;

RETURN char;
END:
eLgt

2

EXAMPLES OF DEVICE DRIVERS

Da;
02 9 udata,infrate = [10;
303 9 OUTPUT(ch.status_port) = WRi;
304 9 CALL delay(l0}; 7% insure delay between outputs ¥/
305 9 QUTPUT (ch.status_port) = WRI ND_RX INT;
306 9 CALL delay{10); 7% insure delay befween outputs #/
307 9 cdata.interrugtitype = DELAYSINTERRUFT;
08 9 QUTPUT (ch.status_port) = WR3;
309 9 CALL delay(10}; 7% insure delay between outputs #/
310 g QUTPUT {ch.status_port) = WR3 RX_DISABLE;

CALL delaz(lOl: 7% insure delay between outputs #/

/% CALL TIME(10); #/

29 QUTPUT(18274%info.ch_a_status_port) = END_DF _INT;
3139 RETURN char;
4 9 END;
315 8§ END;
e 7 END;
7 b END;
183 END;

[#

i/ {alculate recognized baud rate

¥
319 udata.indrate = SHR(19200, (udata.infrate-1} # 3 + fcundsrate);
320 QUTPUT(ch.status_port) = WRL;
321 CALL delay{10); 7% insure del ay between cutputs #/
§%§ QUTPUT (ch.status_port) = WRL NO_RX _INT;
323

CALL delay(10}; 7¢ insure delay befween outputs #/
cdata. interruptstype = DELAYSINTERRUPT;
QUTPUT {ch.status_port) = WR3;

CALL delay{10); 7% insure deia§ between outputs #/
QUTPUT{ch.status_port) = WARS RX _DISABLE;

CALL dela¥€10); 7% insure delay between outputs &/

rd
2
[}
I T P SR S SN A S N

/% CALL TIME(10); #/

329 QUTPUT(1B274%info.ch_a_status_port) = END_OF INT;
330 RETURN char;
33 END;

it

i/ check input parity mode & strip parity if desirzad

¥,
KRV IF ($ggﬁa.termiflags AND INSPARITYSMASK) {3 PASSSINPUTSPARITYSMODE
333 0
334 4 IF (udata.term$+lags AND TNSPARITYSMASK) =

STRIPEINPUTSPARITYSMODE THEN

333 4 char = char AND 7fh;
336 4 g%SE

1
§ ég {udata.term$flags AND OUT$PARSCHECK) <> 0 THEN
5 .
b " QUTPUT(ch.status port! = RR{; /# point to RRI #/
& CALL delay(3); 7% insure delay between outputs #/
& IF (ingut(ch.status_pnrt) AND 182748 INFUTSERROR) <3 O
THEN
342 003

char = char OR 0BOH;
QUTPUT fch.status_port) = ERROR_RESET;
CALL delay(10); 7% insure delay between outputs ¥/
QUTRUT (ch, status_port) = WR3;
CALL delay(10}; 7% insure delay hetween cutputs #/
N QUTPUT (ch.status _port) = WR3_INIT;

Rl
END;
ELsk

o
s
-
mad e ~ad e g L

<
N
~
LNor vy 4

e R e N B | o~ ~4 N e NN N« o~

L LA

.

3 L)

[y |

) B S

iy e R e

(g

r3

EXAMPLES OF DEVICE DRIVERS

D0;
’ IF {udata.tera$flags AND INSPARITY$MASK) =
0 EVEN%INPUTSFARI?Y$HODE THEN
1
dumty = 03
char = char OR dusmy;
IF PARITY THEN
Sl_char = char AND 07FH;

“char = char OR 0BOH;

I
dumay = 03
char = char OR dumay;
IF NOT PARITY THEN
LSFchar = char AND 07FH;

“thar = char OR 0BOH;
END;
END;
END;
END;
QUTPUT(18274%info.ch_a_status_port) = END_OF _INT;
cdata.interruptstype = INPUT$INTERRUPT;
END;
ELSE
iH
IF vector = 0 THEN
D03 /% Tx Buffer empty #/
OUTPUT tch, status_port} = RESET_TX_INT;
CALL delay(3}; /% insure delay between ocutputs #/
cdata.interrunt$type = QUTRUTSINTERRLPT;
OUTPUT{i8274%infc.ch_a_status_part) = END_OF INT;
END;
ELS
D0; /# Ext/Status Change *#/
DUTPUT (ch.status_part] = RESET EXT INT;
cdata.interrupt$iype = MORE§INTERROPT;
CALL delay{Z); /% insure delay between outputs #/
QUTPUT(i82748in%0.ch_a_status_port) = END_OF_INT;

END; /¥ Ext/Status Change #/
END;

RETURN char;

END 18274%check;

B-34

EXAMPLES OF DEVICE DRIVERS

$subtitie{ 18274%answer '}

/¥
¥ TITLE: 1i8274%answer
¥
CALLING SEBUENCE:
* CALL 18274%answerfudataspl;
H
¢ INTERFACE VARIABLES: ‘
) udata$p POTHTER to unit data
¥
+ CALLS:
¥ none
¥
% ABSTRACT:
¥ Sends a mode word to the 8274 to place DTR active.
¥
+/
390 182743ancwer: PROCEDURE(udata$p) REENTRANT PUBLIC;
391 2 DECLARE
udatasp POINTER,
udataspso STRUCTUREX
offset WORD
base SELECTOR) AT(Rudatasp),
gdata BASED udatadpso.base TSHCDATA,
udata BASED udatasp TS$UDATA;
392 2 DECLARE

i82743info¥p POINTER
18274%info BASED i8Z74%infodp i5274$CéNTROLLER$INFO;

393 2 DECLA&E
th_p
ch BASED ch_p STRUCTURE ¢

data_port WORD,
status_part WORD };

POINTER,

94 2 18274%infosp = cdata.dinfofp;
93 2 IF udata.unit$nuaber = 0 THEN
398 2 th_p = €i8274%1info.ch_a_data_port;
¥ 2 ELSE
th_p = @iB274%info.ch_b_data_port;
98 2 QUTPUT(ch, status_port) = WRS;
3792 CALL delay{10}; /% insure delay between cutputs #/
339 2 OUTFUT (ch.status_port) = WRS_DTR_ON;

401 2 END 18274%answer;

EXAMPLES OF DEVICE DRIVERS

$cubtitle! '18274%hanqup’)

/¥
TITLE: 18274$hangup
%
& CALLING SEQUENCE:
* CALL 18274%hangupludatatp);
*
INTERFACE VARIABLES:
* udatasp POINTER to unit data
*
CALLS:
nane
)
£ ABSTRACT:
* Sends a mode word to the 9274 to place DTR inactive.
]
£/
402 | 18274%hangup: PROCEDURE (udatakp} REENTRANT PUBLIC;
403 2 DECLARE
udata$p POINTER,
udatafp¥o STRUCTURE(
pffset NORD
base SELECTOR) AT (8udatasp),
cdata BASED udatatpfo.base TS$CDATA,
udata BASED udata$p TSHUDATA;
404 2 DECLARE
18274%infodp POINTER
18274%info BASED 182748infosp 18274$C6NTROLLER$INFD;
305 2 DECLARE
th p POINTER,
th BASED ch_p STRUCTURE {
data_port WORD,
status_port WORD);
406 2 18274%info¥p = cdata.dinfodp;
407 2 IF udata.unit$number = O THEN
408 2 ch_p = 8i6274%info.ch_a_data_pert;
409 2 ELSE
ch_p = €18274%info.ch_b_data_port;
119 2 QUTPUT {ch.status_part) = WRS;
i1 2 CALL delay(19); /¥ incure delay between outputs #/
12 2 QUTPUTtch.status_port) = WRS_DTR_OFF;
3 2 END :8274%kangup;

B-36

414
415

414

417

418

419

424
3
ALl

422

ra

3

ra

(2%)

rara

Ldled I rata ra

4

EXAMPLES OF DEVICE DRIVERS

$subtitiel'18274%out’)

/¥

+ TITLE: 18274%out

*

+ CALLING SERUENCE:

* CALL 18274%0ut (udata$p,char);

*

INTERFACE VARIABLES:)

udatas$p POINTER to unit data

* char BYTE to OUTPUT

¥

CALLS:

¥ none

¥

* ABSTRACT:

¥ OUTPUTs a char to seiected channel of the 8274,
Marking or spacing parity is handled here if enabled,
4 and the char is sent out.

¥

¥/

18274%out: PROCEDURE{udata$p,char) PUBLIC REENTRANT;
DECLARE

udata# PCINTER,

P
udata$pfo STRUCTURE!
pffecet WORD

base SELECTOR) AT (Budatasp)
cdata BASED udata$pfo.base TS$CDATA,
udata BASED udatasp T3$U0ATA;

DECLARE
18274%1n08p POINTER
13274%infa BASED 18274%infodp i9274$C6NTROLLER$INFD;

DECLARE
ch_p FOINTER,
ch BASED ch_p STRUCTURE ¢

data port WORD,
status_port WORD)y

DECLARE
char BYTE,
pode WORD;

18274%infodp = cdata.dinfofp;

IF udata.unit$number = O THEN
ch_p = 8i8274%inf0.ch_a_data_port;

ELSE
ch_p = @i82748%infu.ch_b_data_port;
mode = udata.termfflags AND OQUTSPARITYEMASK,
gé node <= MARKSOUTPUTSPARITYSMODE THEN
HHH
" IF moce = MARKSQUTPUTSPARITYSNODE THEN
char = char OR 80H;

char = char AND 07FH;
QUTPUT (ch.data_port) = char;

END 18274%0ut;

B-37

-
4
r~a

-
4
<l

434

T

-
P
(&

436

444
a4k

147

449
449
450

451
452

o

453

454
454

[] ~a

3

%]

ra

Eapata

rA 303

[l 2)]

(%]

Pabara rar3ra

N

ra

I

EXAMPLES OF DEVICE DRIVERS
Foubtitle('i8274%finish "}

/%

TITLE: 1i8274%finich

)

CALLING SEBUENCE:

¥ CALL i8274%finish(cdatasp!;

*

INTERFACE VARIABLES:

¥ cdata$p - peinter to controller data.

¥

[CALLS:

¥ none

¥

RBSTRACT:

¥ Procedure disables TY, RY and interrupts,
¥

£/

182744¢inich: PROCEDURE i{cdata$p) PUBLIC REENTRANT;
DECLARE

cdatadp POINTER
cdata BASED cdatadp TS4COATA;
DECLARE
18274%infosp FOINTER
18274%info BASED 18274finfodp 187745L6NTP0L'EP$INFD-
DECLARE
port WORD;

/¥

i/ Get the configuration info

*

i8274%infodp = cdata.cinfofp;

/%

4/ Dicable the 8274 T, RX, and interrupts.

4

port = 1B274%info.ch_b_status_port;

OUTRUT (nort) = WRE; /¥ point to WRG #/

CALL delay(i0); /# insure delay between outputs
QUTPUT (port) = WRS_TY _DISABLE; /* disable Tx

CALL delay(19); {# insure delay between outputs
DUTPUT‘EQr*) /% paint to WR3 #/

CALL del axllﬂ’ /% insure delay between cutputs
JLTPUTprrt\ = WR3I_RX_DISABLE; /# disable Rx

CALL delay(10); /% insure delay hetween outputs
QUTPUT {part! = WR1; /% paint to WRL #/

CALL de'alfln) /% insure delay between cutputs
QUTPUTY pcrt’ = WRL_NO_INT; /% disable interrupts

CALL delay(td); /% insure delay between cutputs

part = 18274%info.ch_a_status_port;

OUTPUT(ant = WRS; /% goint to WRG ¥/

CALL de /% 1nsure delay between cutputs
DUTPUT(Yor+) = NRJ _TX_DISABLE; /+ disable Ty

CALL delay(10); /% insure delay between outputs
OUTPUT(Yort) = /# point to WRI ¥/

CALL delay(10); /% 1nsure delay between putputs
OUTPUT(YortJ =" UR3 _RX_DISABLE; /# dicable Rx

CALL delay(10}; /# insure delay between outputs
OUTPUT (port) = WR1; /% point to WR1 #/

CALL delay{l0); /% insure delay between outputs
OUTPUT(?ort) =" W1 _ND_INT; /% disable interrupts

CALL delay(10); /% insure delay between outputs

END 18274%finish;
END 48274;

&/

¥/

+/

¥/

£/

&/

+/

*/

¥/

%/

EXAMPLES OF DEVICE DRIVERS
MODULE INFORMATION:

CODE AREA SIIE 09434 23710
CONSTANT AREA SIZE = 0000H o
YARIABLE AREA SIZE = 000OH 0D
MAXIMUM STACK SIZE = 0030H 431
1394 LINES READ

() PROGRAM WARNINGS

0 PROGRAM ERRORS

DICTIONARY SUMMARY:
96KB MEMORY AVAILABLE
22KB MEMORY USED (22%)
JkB DISK SPACE USED

END OF PL/M-B& COMFILATION

x8233.1it

8255 is programmed as follows:

Group A: Mode |
Group B: Mode 0

Port A and Lower Port C: OUTPUT
Port B and Upper Port C: INPUT
Port C definition (bit 0 is LSB; bit 7 is MSB):
Bit Character strobe to the printer
not used
not used
Character acknowledge from the printer is complete
Printer ready
Paper out
Printer interrupt enable
Character acknowledge from the printer

e M o s i e e e oo Ae e e oie e ok S e S o

N O LA B AR D

¥/

DEC_ARE
MODE$WORD LITERALLY "0RAH',
CHARSACKSCONPLETE LITERALLY "08H’
PRINTER$READY LITERALLY "10H”

1
1
PAPERFQUT LITERALLY "20H’,
CHARSACK LITERALLY "BOH',
INTSENABLE LITERALLY "ODH',
INT$DISABLE LITERALLY "OCH',
STROBE$ON LITERALLY "OIH,
STROBESOFF LITERALLY "OOH':
Ik
¥ xprotr.lit
¥
% Common device driver information
*
¥ level: Interrupt level
¥ priority: Priority of interrupt task
% stack$size: Stack size for interrupt task
¥ datatsize: Device local data size
£ nupfunits: Number of units on device
¥ devicedinit: Init device procedure
¥ device$finish: Finiched with device procedure
¥ devicefstart: Start device procedure
¥ device$stop: Stzp device procedure
*/deviceiinterrupt: Device interrupt procedure
£
DECL?RE COMMONSDEVEINFO LITERALLY
level 0,
priority BYTE,
stackésize 4ard,
data$size WORD,
num$units WORD,
device$init WORD,
device$finish WORD,
device$start NORD,
device$stop WORD

devicedinterrupt NDRD!; B-39

EXAMPLES OF DEVICE DRIVERS

DECLARE 18235#INFO LITERALLY

Asport WORD,

B¥rort WORD,

Lépart WORD,

Cantrel$port WCRD '

DECLARE

PRINTER$DEVICE$INFO LITERALLY ‘STRUCTURE(
COMMONSDEVSINFO,
182358 INFO,

tabfcontrol WORD) ‘;

$save nolist

/%

£ x206dv.1it)

£ Defines literals for 206 driver
*

%/

/%

The ioph fields (first 9 bytes) must be first!!

+ They are used later and the other prucedures

+ do not know of status or restore.

]

Note that each spindle has up to 4 platters, and each 204 can support
up to 4 spindles., Thus, there are 4 statuses: one for each spindie.

¥
Restore is used to indicate that there is a restore in progress.
It is set when a restore is started after a request returns an
% error which requires a restore to reset the drive. A new request
* is not started when there is a restore in progress, instead the
¥ znterrugt routine starts the request and resets restore when
*lthe restore finishes.
¥
DECLARE
I0SPARMSBLOCK$206 LITERALLY "STRUCTURE(
inter BYTE,
instr BYTE,
ricount BYTE,
cyl$add RYTE,
rectadd BYTE
buffsp POINTER,
status(4) BYTE,
restore BYTE,

tormat$tablel72) BYTE) "

It ;
% defines masks
*/

OECLARE
interfonfmask LITERALLY "0OO0BH , /# bit 4 1= 14-bit data #/
interfoffémask LITERALLY "Ol8H",
FORMATSTRACK$ON LITERALLY "G40H
1206FTRACKEMAY LITERALLY 8007, /% 400 tracks # 2 surfaces #/
12064SECTORSMAY LITERALLY "36°

commznd$busy LITERALLY 0808,

/¥

¥ defines op-codes

*/

DECLARE
nofop LITERALLY "QO0H".
seek$op LITERALLY “QIH',
formatfop LITERALLY "02H'
restorefop LITERALLY “03H",
readfop LITERALLY "04H",
verifyfop LITERALLY "QZH',
writefop LITERALLY ‘06H';

B-40

EXAMPLES OF DEVICE DRIVERS

/%

¥ defines ports

¥/

declare
subsszsten$gort LITERALLY 'base’,
result$type gort LITERALLY ‘base + {°,
tontroller$stat LITERALLY ‘'base + 27,
resulttbytesport LITERALLY ‘'base + 37,
interfstatfport LITERALLY ‘base + 4°,
disktconfi?$pnrt LITERALLY ‘base + 77,
lofsegipor LITERALLY 'base’,
hi$se%$port LITERALLY ‘base’,
lofoft$port LITERALLY ‘base + 17,
hifofé$part LITERALLY 'base + 27,
ctart¥diagnostic LITERALLY ‘base + §',
reset$part LITERALLY 'dinfo.base + 77;

$restore

$save nolist

/
x20ain.1it

206 Driver info

Adds to the device$info and unit$info structures,
using comdon device suppart and random access
device support.

el T N N R

~
ES

Per device information

-
S

DECLARE
T206$DEVICESINFO LITERALLY "STRUCTURE(
RADEVEDEVICESINFO,
base WORD) "5

/¥
Fer unit information
f

DECLARE
T206$UNITSINFD LITERALLY "STRUCTURE(RADSUNITSINFQ) 'y
frestare

$save nolist

I3
¥ x20bdc, ext
¥/
send$204¥iopt: PROCEDURE (base, iopb$p) BODLEAN EXTERMAL:
DECLARE
base WORD

iapbdp POINTER;
END cend$206%ioph;

frestore

B-41

EXAMPLES OF DEVICE DRIVERS

$save nolist
1%
¥ v204dp.ext
¥/
i0$206: PROCEDURE t{base, iors$p, duib#p, iopb¥p) EXTERNAL;
DECLARE
base WORD
iorssp POINTER,
duib$p POINTER,
iopb$p POINTER;
END 10$206;

$restore

$save nolist

/%
¥ x204¢m.ext
&/
format$206: PROCEDURE {base, iors$p, duibdp, iopb$p) EXTERNAL;
DECLARE
base HORD
iorssp POINTER,
duib$p POINTER,
lopbsp POINTER;
END format$206;
frestore

FSAVE NCLIST
/%

& nsleep.ext
%/

rofsleep: PROCEDURE(time$limit,
exceptéptr | EXTERNAL;

DECLARE time$limit WORD,
exceptéptr FOINTER;

END ro$sleep;
$RESTORE

fsave nolist

/¥
% ucomon.lit
* Dft-used literals.
¥
*/
DECLARE
BODLEAN LITERALLY 'BYTE’,
TRUE LITERALLY "QFFH’,
FALSE LITERALLY "D00H',
FOREVER LITERALLY "WHILE TRUE",
PTREQVERLAY LITERALLY "STRUCTURE (offset WORD, base TOKEM) ',
PSOVERLAY LITERALLY 'STRUCTURE(o#fset WORD, base WORD)®
5TRING LITERALLY 'STRUCTURE(length BYTE, char (1) BYT&)’,

B-42

EXAMPLES O

F DEVICE DRIVERS

/%
/ DNORD LITERALLY ‘POINTER’,
*
NOSTIMESLINIT LITERALLY OFFFFH',
BYTESMAX LITERALLY “OFFH’
WORDSNAX LITERALLY "OFFFFH’, ,
FIFO$Q LITERALLY ‘000H', /+ select FIFD queueing #/
brost FRIOS$E LITERALLY "001H'; /+ select PRIO queueing */
restare

$5AVE NOLIST

/%
¥ xdelay.ext
#/

/¥
% External Declaration for
+/

delay: PROCEDURE{units) EXT

DECLARE
units

END delay;

$restore

tsave nolist

/¥

¥ xdrinf.lit

¥ Driver information f
¥

£/

Random-access driver

Ieyel;t
priority:
stack¥size:
data¥size:
numfunits:
devicefinit:
devicedfinish:
devicefstart:
devicedstop:
devicefinterrupt:
/

e ok W Wm B e dE e W vk WK e S

DECLARE
RADEVSDEVICESINFD LI

"level
priority
stackfsize
data$size
nupdunits
devicefinit
device$finish
device$start
device$stap
devicedinterrupt

Delay Procedure.
ERNAL;

BYTE;

or common and random access devices.

information

Interrupt level

Priority of interrupt task
Stack size for interrupt task
device local data size

Number of units on device

Tnit device procedure

Finished uitg device procedure
Start device procedure

Stop device procedure

Device interrupt procedure

TERALLY
WORD,
BYTE,
WORE,
WORD,
WORD,
WORD,
WORD,
WORD,
4ORD,
HORD';

B-43

EXAMPLES OF DEVICE DRIVERS

/#

¥ Unit info for radev

4

¥ track$size: Size in bytes of track. Used for calculating

¥ track/sector. Requests to device will not cross
¥ track boundaries,

*/maxiretry: Number of times to retry on a soft I0 error.

¥

CLARE
RADSUNITSINFO LITERALLY

"track$size WORD,
maxiretry WORD,
cylinderfsize W3RD '3

$restore

$cave nolist

k]

¥ xguib.lit

¥ Device-Unit Information Block definition.

*

¥/
i*

¥ name: ASCIT name of dev-unit, null padded

¥ fiieddriver: bitii) == file-driver {141} 15 ok for this device.
¥ See idevmg.pla

¥ functs: from EFS, bit i ==} function(i) supportzd by the driver.
¥ flags: Far 215 only. See EPS.

* functions are F¥FIRMAT, FHREAD, etc,

¢ devigran: device grarularity in bytes,

£ devésize: cize (in bytes) of device-unit

* device: device number/device code

¥ unity device specific number of controller sub-unit {i,e.,
* tor a Z04, couid e 0,1 te indicate different drives)
¥ deviunit: unigue number identifying a device/unit pair for device
L allocation purposas

¥ initfio: driver procedure for initializin9 driver

% finishfio: driver procedure for turning off/deallscating driver
% queuefio: driver procedure for gqueueing 1/0 requests

¥ canceldio: driver procedure for cancelling I/0 reguests

devicedinfodp: device specific information polnter,

£ unit¥intodp: unit specific information pointer.

ypdatestimeout: time {ticke) hefore update on this unit

& nupfhuffers: number of deblnckin%/buiferinq buffers for this unit
¥ooriority: service task ariority,

finedfupdate: boolean to indicate use of wall clock updates.

* pay$buffers: mavinum no. of buffers for device (used by EIOS)
LIESDES tiller byte

$/

[ECLARE

DUIBSPARTSONE LITERALLY
‘r.ame {DEVSNAMESLEN) BYTE,
filefdriver WORD

]
tuncts BYTE,
flage BYTE,
devagran WORD
devisize OWORD,
device BYTE,
unit BYTE,
deviunit WGRD ",

B-44

EXAMPLES OF DEVICE DRIVERS

DUIBSPARTSTHWO LITERALLY
’ i ORD

initfio

b
finish$io NORD,
gueuedio WARD,
tancel$io NORD
devicesinfosp POINTER,
unitfinfosp POINTER,
updatestimeout WORD,
nuasbuffere WORD,
priority BYTE,
firedfupdate BYTE,
maxsbuffers BYTE,
fFill YTE'

DEVSUNITHINFOSBLOCK LITERALLY "STRUCTURE!
DUIB$PARTSONE
DUIBSPARTSTHO!
DECLARE
VF$aUTO LITERALLY 't°

YFSDENSITY LITERALLY "2
YFSSIDES LITERALLY "4

YFEMINI
frestore

$save nolist
/%

¥ xexcep.lit

* 1/0 Systea Exception Code Mnemonics.

%/
$inciudel:floxnerro.lit)
/%

¥ 105 Synchronous Avoidable exception codes.

*/

DECLARE
ESNOUSER
ESNOFREFIX

/%

LITERALLY '8’

- - .

LITERALLY "0BOZIH',
LITERALLY "08022H";

¥ 102 Asynchronous exception codes,

¥/

DECLARE
ESFEYIST
ESFNEXIST
E$DEVFD
ESSUPPORT
ESEMPTVSENTRY
ESDIRSEND
ESFACCESS
ESFTYPE
ESSHARE
E$SPACE
ESI10DR
E$10
ESFLUSHING
ESILLVOL
ESDEVSOFFSLINE
E$IFDR

/¥

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

“D0020H"
000214
00022H°
*00023H°
"D0028H"
00025H"
‘100 28H"
"0027H"
GQ028H"
“00029H"
000Z8H "
000 ZBH"
0002CH"
“000Z0H "
002EH"
9002FH"

*IE$IG expanded with unitstatus codes
*/

A4 m e s wm m e am e iw . w w=

/% Job has no Default User Ohiect ¥/
/% Job has ne Default Prefix Object %/

¥ File Exists ¥/
Non-exictant File #/
/# Device & File Driver Incompatable ¢/
Un-supgurted Request #/
/% Empty Directory Entry ¥/
% End of Directory #/
/% Access to File Not Granted ¢/
/% Bad File Type #/
Improper File Sharing Reguested #/
/% No Space Lart #/
Illeeal Device Driver Request #/
[/0 Error %/
/# Connection is +lushing reguests #/
¢ Tilegal Volume ¥/
/% Device Was OfFf Lina #/
I1legal File Driver Request #/

DECL

$restore

$save no
Ix

¥ rioe
L34

/¥

¥ I0e
*/

BECL

trestore

$=ave no

vb:*-k*sn*

DECL

EXAMPLES OF DEVICE DRIVERS

ARE

E$T0$UNCLASS LITERALLY
E$10$50FT LITERALLY
E$T0$HARD LITERALLY
ESIO$0PRINT LITERALLY
ESI0$HRPROT LITERALLY
ES1O$NGSDATA LITERALLY
E$I0$NODE LITERALLY
list

we.lit

sception codes

ARE

T0$UNCLASS LITERALLY 07,
[0$50FT LITERALLY 17,
10$HARD LITERALLY '27,
I0$0PRINT LITERALLY "3,
I05HRPROT LITERALLY "4,
[0NODATA LITERALLY ‘57,
1O$MODE LITERALLY "6'3
list

wiofct.lit

I3 functicn codes

ARE

FEREAD LITERALLY 07,
CHYRITE LITERALLY "1-,
FESEEX LITERALLY 27,
FESPECIAL LITEPH'L' N
FSATTACHSDEY LITERALLY 47,
FEDETACHSDEY LITERALLY 57,
F3OPEN LITERALLY 47,
F$CLOSE LITERALLY 77,
F$GETLS LITERALLY '67,
F$GETFS LITERALLY ‘9‘,
FIGETEXT LITERALLY "1G7,
FESETEXT LITERALLY “11°,
FSNULLSCH$ACCESS LITERALLY *12°,
FENULLSDELETE LITERALLY "137,
F$RENAME LITERALLY "14°,
FSGETHPATHSCOMP LITERALLY 1537,
FEGETHLIRSENTRY LITERALLY '14°
F$TRUNC LITERALLY 177,
F$DETACH LITERALLY 18",
FENUMSFUNCT LITERALLY "19°;

‘QO0S0H"
"00031H",
‘000524,
"00053H",
000544,
"00055H ",
"00056H "

B-46

/¥ Unclassified ¥/

/% Soft errar #/

/¢ Hard error ¥/

/% Qperator intervention required #/
/% Write Erotected %/

/% No further data #/

/¥ Mode viclation #/

EXAMPLES OF DEVICE DRIVERS

/%

¢ Function codes for internal use onlz.

The rqScommonsattach and cosmoniotask use FSATTACH$THRU.
!/The req$update and cosmon$iostask use FHUPDATE,

¥

DECLARE
FSATTACH$THRU LITERALLY "19°,
FSUPDATE LITERALLY "207;
$restare

$sav? nolist

{

xiotvg.lit
MX/B6 /0 System "type” literals.

¥
¥
¥
*
¥/
DECLARE
CONNECTION LITERALLY 'TOKEN',
USER LITERALLY "TOKEN'

BLOCKSNUM LITERALLY "{3) BYTE';
$restore

$save nolist
/%
¥ yiors,lit
¥ 1/0 Request/Result Segment
¥

¥/
DECLARE

TORS$PARTHONE LITERALLY
‘status WORD,
unitystatus WORD,
actual WORD,
actual$fil1 WORD,
device WCRD,
unit BYTE,
funct BYTE,
subfunct WORD
deviloc DWORD
buff4p POINTER",

TGR3$PARTSTHO LITERALLY
"count WORD,
count$fill WORD
auxdp e0INTER,
link$for FOINTER,
link$back POINTER,
raspabox MAILBOX,
done HOOLEAN,
iors$fill BYTE
canceldid TOKER,
cann$t TOKEN",

I0$REQSRESSSES LITERALLY "STRUCTURE(
IGRS$PARTHONE,
TORSSPARTSTHE) '

/%

*/Define number of actual bytes of data (i.e., before links)
¥

DECLARE
TORSSDATASSIZE LITERALLY '30°;

B-47

EXAMPLES OF DEVICE DRIVERS

finclude(sflixiofect. lit)

$restore

¥save nolist

/¢
£ xnotif.est
*

External for notify support procedure
Cailed by randos access supported drivers

L7l

nntiﬁg;.PRDCEDURE(unit, idata$p) EXTERNAL;
Jeul

ARE

unit

ddatasp
END notify;

$restore

$cave nolist
/%

¥ unerro.lit
%/

DECLARE

E$EXIST
ESSTATE

ESNCTSCONFIGURED

BECLARE
E$7ERDSDI

BYTE
POINTER;

VIDE

ESOVERFLOW

ESTYPE
ESBOUNDS
ESPARAN

EEEADSCALL

frestaore

fsave nolist
/%
£ wnutvo.lit
£ ' E
¥
£/

GECLARE
TOKEN
SEGMENT
TASK
REGION
SEMAPHORE
MAILBOX
J0B
EXTENSION

DECLARE
T$MATLROX
THSEGMENT

frestare

L

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

“H0000H

"00001H"

000021
"DO003H’
“(0004H"
Q0O5H"
"DO00GH’
"D0007H’
OR008H

"8000H
RN
“OBOOZH
800K
"43004H"
"(80UEH"

(MX/86 Nucleus "type” literais.
¥P

LITERALLY 'SELECTOR',
LITERALLY "TOKEN',
LITERALLY 'TOKEN',
LITERALLY 'TOKEN',
LITERALLY "TOKEN,
LITERALLY ‘TOKEN',
LITERALLY 'TCOKEN',
LITERALLY "TOKEN';

LITERALLY "03R",
LITERALLY "0&H';

B~48

. - oam e

EXAMPLES OF DEVICE DRIVERS

$save nolist

%
yparam. lit
¥ 1/0 Systea parameter literals.

*
*/
DECLARE)
DEVSNAMESLEN LITERALLY "14°, /% device name is 14 bytes #/
PATHSCOMPSLEN LITERALLY '14°, /# path component size #/
UP$COMP LITERALLY """*""" /% "ug' component character #/
PATH$SEP LITERALLY "“'/'"", /% path component seperator character #/
DEFSFREFIX$CHAR LITERALLY "'"$°"'; /% default-prefix character #/
DECLARE
ATTSDEVETASKSSTACKSSIIE LITERALLY '5127,
CONN$JOBSDELETESTASKSSTACKSSIZE LITERALLY '312°,
TIMER$TASKSSTACK $S1ZE LITERALLY ‘512",
COMMONSDRIVER$STACKS$SIIE LITERALLY '512°;
DECLARE
10550S$EXTENSION LITERALLY "192°%; /% 05 extension vector #/
DECLARE
AFACESO$LEN LITERALLY " (53#2) ', /% xtace mbox gueue length = S#4 #/

CONNSDEL#QSLEN LITERALLY “(5#2) 7 /% conn jab-del abox queue length = 5#4 #/
frestore

fsave nolist

/%
¥ prerr.lit
%/

/¥
¥ error codes
*/
DECLARE
E$0K LITERALLY "0Q00H",
E$IDDR LITERALLY "0028H"s
frestore

$save nolist

/¥
£ oatreec.lit
Iy

DECLARE TRACKSSECTOR$STRUCT LITERALLY 'STRUCTURE!
sector NORDz
track WORD:';

frestare

$cave nolist

/4

¥ xtssow.ent

£/

stofsetfoutputdwaiting: PROCEDURE (udatasp) EXTERNAL;
DECLARE

: udataie POINTER;

END stsfsetfoutputfwaiting;

frestore

B-49

EXAMPLES OF DEVICE DRIVERS

$SAVE NOLIST

/¥
¥ xtstim,ext
+/

/¥

¥ External Declaration

+ for tiaer support procedure,
¥/

set$baud$ratefcount: PROCEDURE (command_port, counter gnrt, timer_type,
counter_number, rate_count) EXTERNAL;

DECLARE
(command_port, counter_port, rate_count) WORD,
{tiser _type, counter_number) YTE;

END set$baudératescount;
$RESTORE

55av7 nolist

)
£ yradsf.lit

3 Random-Access driver Special-Function Mnemonics.
*

H

/

DECLARE
FSSFORMATSTRACK LITERALLY "07; /¥ format a track #/

/¥

+ Format info structure to format one track on
% a disk(hard or flappyl

¥ used by 204 & 206 drivers

+

#/

DECLARE
FORMATHINFOSSTRUCT LITERALLY 'STRUCTURE(
trackdnue WGRD,
track$interleave WO,
track$skew WOR))
Fill$char BYTE)

Device label seecial function, Asks driver to supply
device information for naged file label.

f

DECL

~
R]

ARE
FS$DEVICESLABEL LITERALLY '3

/*
Special tape functions.
*

¥

DECLARE
FS$REWIND LITERALLY
FSSREADSFILESMARK LITERALLY
FSSWRITESFILESMARK LITERALLY
FSSRETENSION LITERALLY

- -

L)
- = -
-

frestore

XN

B-50

INDEX

Primary references are underscored.

assembly language iii, 8-1
attach device requests 4-1

baud rate 7-16, 7-19
BEGINSLONGSTERMSOP procedure 5-8
buffered devices 7-17, 7-25
buffers 2-6, 2-7

CANCEL$IO procedure 2-5, 3-3, 6-4, A-6
cancel requests 4-2
close requests 4-2
common device driver 1-3, 5-1
device information table 3-8
example B-2
support routines A-1, B-55
common device 3-1
comminication levels 1-1
configuration 2-1, 8-1
connection 2-16
creating DUIBs 2-8
custom device drivers 1-3, 6-1
custom devices 3-2 -
cylinder 3-11

data storage area 3-9, 3-13
data structures 3-7, 3-12
DEFAULTSFINISH procedure 5-3
DEFAULTSINIT procedure 5-2
DEFAULTSSTOP procedure 5-5
detach device requests 4-2
device

buffered 7-17, 7-25

granularity 2-4

interfaces 2-13

aumber 1-2, 2-5, 2-11
device data storage area 3-9, 3-13, A-3, A-9
device driver

interfaces 2-1

sample INCLUDE files B-55

type 1-3
DEVICESFINISH procedure 3-10, 5-2
Device Information Table 2-5
DEVICESINIT procedure 3-10, 5-2
DEVICESINTERRUPT procedure 3-10, 5-5
DEVICESSTART procedure 3-10, 5-3

Device Drivers Index—1

INDEX (continued)

DEVICE$STOP procedure 3-10, 5-4
device-unit information block (DUIB) 2-2
creation 2-8
structure 2-2
use of 2-7, 4-3
device-unit =
name 2-3
oumber 1-2, 2-5
doubly linked list 6-5
driver configuration 8-1
DQSATTACH system call 2-3, 3-4
DQSCREATE system call 2-3, 3-4

DUIB, see: device-unit information block

ENDSLONGSTERMSOP procedure 5-9
examples of device drivers B-1
device driver INCLUDE files B-55
disk controller driver B-8
printer driver B-2
terminal driver B-29

file connection 2-16

file drivers 1-2, 2-3

FINISH$IO procedure 2-5, 3-2, 3-10, 6-2, A-3
fixed updating 2-6

FORMAT command 5-11

functions 2-3, 2-11

GET$IORS procedure 5-10

granularity 2-4, 2-7

1206DS.P86 disk-controller driver source file B-8
INITSIO procedure 2-5, 3-2, A-1, A-9
Intel-supplied routines 5-1
Interactive Configuration Utility (ICU) 8-1
interfaces to the device driver 2-1
interrupt
handlers and tasks 3-3
level 3-8, 7-5
task A-3
task priority 3-9
type 7-13, 7-22
INTERRUPTSTASK procedure 3-3, A-9
I/0 functions 2-3
I/0 request/result segment (IORS) 1-3, 2-9, A-5, A-7, A-11
structure 2-9
use of 4-3
I/0 requests 1-3, 4-1
I/0 System interfaces 2-1
I/0 System responses 4-1
I/0 Systemsupplied routines 5-1
IPRNTR.P86 printer driver source file B-2

levels of communication 1-1
linked list 6-5

Device Drivers Index—2

INDEX (continued)

long-term operations 5-8
modem 7-8

name of device-unit 2-2
notify procedure 2-14, 5-6
numbering of devices 1-2

open requests 4-2

parity 7-7

PL/M-86 {iii, 5-11, 8-1
portable device drivers 3-14
priority 3-9

QUEUESIO procedure 2-5, 3-3, 6-3, A-5

RADS procedure-name prefix (iRMX 88 systems only) 3-2, A-1
random access device drivers 1-3, 5-1

random access devices 3-1

random access driver example B-8

read requests 4-2

request queue 6-5

requests 1-3, 4-1

requirements for using the common device driver 3-1

retry limit 3-11

RQSASPHYSICALSATTACHSDEVICE system call 2-3, 3-4, 3-5, 6=4, A-1
RQSELVL system call A-9

ROSFORMAT system call 5-11

RQSSETSINTERRUPT system call A-9

SEEKSCOMPLETE procedure 3-11, 5-7

seek requests 4-2

set output waiting (XTSSSETSOUTPUTSWAITING) procedure 7-18, 7-24
signal character 2-15

source files, device drivers B-1

special requests 4-2

stack size 3-9

support (INCUDE) files B-55

tape drives 2-14, 5-8
rewinding of 5-8
terminal
attributes 2-15
baud rate 7-16, 7-19
Device Information Table 2-5, 3-8, 7-3, 7-27
devices 3-3
driver example B—-29
drivers 7-1
flags 7-8, 7-14
modem 7-8
parity 7-7
terminal answer (TERMSANSWER) procedure 7-17, 7-20, 7-27

terminal check (TERMSCHECK) procedure 7-17, 7-22, 7-27

Device Drivers Index—3

terminal
terminal
terminal
terminal
terminal
terminal
Terminal
terminal

INDEX (continued)

controller data 7-14, 7-27

finish (TERM$FINISH) procedure 7-17, 7-19, 7-27
hangup (TERMSHANGUP) procedure 7-17, 7-21, 7-27
initialization (TERMSINIT) procedure 7-17, 7-18, 7-27
output (TERMSOUT) procedure 7-17, 7-24, 7-27

setup (TERMSSETUP) procedure 7-17, 7-19, 7-27

Support Code 7-11

unit data 7-4, 7-14, 7-27

track size 3-11

types of

device drivers 1-3

Unit Information Table 2-5, 3-10, 7-6
unit number 1-2, 2-5, 2-11
unit status codes 2-10

updating

output to a device 2-6

using DUIBs 2-7

volume granularity 2-7

write requests 4-2

X8274,P86 terminal driver source file B=29
XTSSSETSOUTPUTSWAITING procedure 7-24

X

Device Drivers Index—4

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	8-01
	8-02
	8-03
	8-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	B-41
	B-42
	B-43
	B-44
	B-45
	B-46
	B-47
	B-48
	B-49
	B-50
	idx01
	idx02
	idx03
	idx04

